This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359723 #8 Jan 14 2023 10:08:08 %S A359723 1,1,7,28,151,803,4108,22532,125449,705929,4035955,23332364,136111591, %T A359723 800561116,4741777880,28258286033,169322163149,1019483819757, %U A359723 6164900341534,37425357962592,228002416106605,1393503512669230,8541839907812651,52500559705299795,323483846045526418 %N A359723 a(n) = coefficient of x^n in the power series A(x) such that: x = Sum_{n=-oo..+oo} (-1)^n * x^n * (3 + x^n)^n * A(x)^n. %C A359723 Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y. %F A359723 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following. %F A359723 (1) x = Sum_{n=-oo..+oo} (-1)^n * x^n * (3 + x^n)^n * A(x)^n. %F A359723 (2) x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ((1 + 3*x^n)^n * A(x)^n). %F A359723 (3) a(n) = Sum_{k=0..floor(2*n/3)} A359720(n,k)*3^k, for n >= 0. %e A359723 G.f.: A(x) = 1 + x + 7*x^2 + 28*x^3 + 151*x^4 + 803*x^5 + 4108*x^6 + 22532*x^7 + 125449*x^8 + 705929*x^9 + 4035955*x^10 + 23332364*x^11 + 136111591*x^12 + ... %e A359723 SPECIFIC VALUES. %e A359723 A(x) = 2 at x = 0.150684304746792807618050217238804920801612774142866... %e A359723 A(1/7) = 1.67848119643298635311797131334138331526984303696733717... %e A359723 A(1/8) = 1.40389487408504106142147713148599989460789630965507028... %o A359723 (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); %o A359723 A[#A] = polcoeff(x - sum(n=-#A-1, #A+1, (-1)^n * x^n * (3 + x^n +x*O(x^#A) )^n * Ser(A)^n ), #A-1) ); A[n+1]} %o A359723 for(n=0, 30, print1(a(n), ", ")) %Y A359723 Cf. A359720, A355357, A357797, A359721, A359724. %K A359723 nonn %O A359723 0,3 %A A359723 _Paul D. Hanna_, Jan 11 2023