cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359734 Lexicographically earliest sequence of distinct nonnegative integers such that the sequence A051699(a(n)) (distance from the nearest prime) has the same sequence of digits.

This page as a plain text file.
%I A359734 #19 Dec 21 2024 18:22:54
%S A359734 1,10,2,0,3,26,9,119,532,4,6,896,118,34,15,93,121,531,898,205,8,12,
%T A359734 533,50,117,14,122,1078,56,16,21,18,144,64,20,895,1138,899,25,5,186,
%U A359734 1077,22,27,204,76,86,206,7,24,28,120,30,123,32,33,35,36,11,300
%N A359734 Lexicographically earliest sequence of distinct nonnegative integers such that the sequence A051699(a(n)) (distance from the nearest prime) has the same sequence of digits.
%C A359734 In the definition, "has the same digits" means that the concatenation of the terms yields the same string of digits, for the sequence a(.) and the sequence A051699(a(.)).
%C A359734 Conjectured to be a permutation of the nonnegative integers. The inverse permutation would start (3, 0, 2, 4, 9, 39, 10, 48, 20, 6, 1, 58, 21, 75, 25, 14, ...).
%H A359734 Eric Angelini, <a href="https://cinquantesignes.blogspot.com/2023/01/digit-spines.html">Digit-spines</a>, personal blog "Cinquante signes" on blogspot.com, Jan. 11, 2023.
%H A359734 Eric Angelini, <a href="/A359736/a359736.pdf">Digit-spines</a>, personal blog "Cinquante signes" on blogspot.com, Jan. 11, 2023. [Cached copy]
%e A359734 Below, row "p" lists the closest prime to a(n) and row "d" the absolute difference |a(n)-p|. We have the same sequence of digits in rows a (this sequence) and d:
%e A359734   n :  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14 ...
%e A359734   a :  1  10   2   0   3  26   9  119 532  4   6 896 118  34  15 ...
%e A359734   p :  2  11   2   2   3  23   7  113 523  3   5 887 113  31  13 ...
%e A359734   d :  1   1   0   2   0   3   2   6   9   1   1   9   5   3   2 ...
%o A359734 (PARI) spine(f, N=20, S=[], d=[], md = n -> if(n, digits(n), [0])) = { vector(N, n, my(m, j=1); for(k=0, oo, setsearch(S, k) && next; while( f(j) < k, j++); m = md(min(m = f(j) - k, iferr(k - f(j-1), E, m))); if(m == concat(d, md(k))[1..#m], d = concat(d, md(k))[#m+1 .. -1]; m=k; break)); S = setunion(S, [m]); m)}
%o A359734 spine(prime, 200) \\ 200 terms of this sequence
%Y A359734 Cf. A051699 (distance from the nearest prime), A000040 (the primes).
%Y A359734 Cf. A359736, A359737 (similar for squares and Fibonacci numbers).
%K A359734 nonn,base
%O A359734 0,2
%A A359734 _M. F. Hasler_ and _Eric Angelini_, Jan 12 2023