This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359737 #16 Dec 21 2024 18:24:34 %S A359737 0,12,10,4,1,17,6,7,41,27,48,25,9,11,62,30,42,15,26,43,14,20,28,19,16, %T A359737 2,38,23,22,29,32,40,51,18,33,59,36,3,53,47,35,46,54,49,57,24,63,87, %U A359737 31,91,111,64,37,113,5,39,56,88,81,52,58,50,80,86,61,92,60,141,85,82,147 %N A359737 Lexicographically earliest sequence of distinct nonnegative integers such that the sequence d(n) = A296239(a(n)) has the same sequence of digits, where A296239 gives the distance from the nearest Fibonacci number, cf. A000045. %C A359737 In the definition, "has the same sequence of digits" means that the concatenation of the terms yields the same string of digits, for the sequence a(.) and the sequence d(.). %C A359737 Conjectured to be a permutation of the nonnegative integers. The inverse permutation would start (0, 4, 25, 37, 3, 54, 6, 7, 104, 12, 2, 13, 1, 106, 20, ...). %H A359737 Eric Angelini, <a href="https://cinquantesignes.blogspot.com/2023/01/digit-spines.html">Digit-spines</a>, personal blog "Cinquante signes" on blogspot.com, Jan. 11, 2023. %H A359737 Eric Angelini, <a href="/A359736/a359736.pdf">Digit-spines</a>, personal blog "Cinquante signes" on blogspot.com, Jan. 11, 2023. [Cached copy] %e A359737 Below, row "F" lists the closest Fibonacci number to a(n) and row "d" the absolute difference |a(n) - F|. We have the same sequence of digits in rows a (this sequence) and d: %e A359737 n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... %e A359737 a : 0 12 10 4 1 17 6 7 41 27 48 25 9 11 62 ... %e A359737 F : 0 13 8 3 1 13 5 8 34 21 55 21 8 13 55 ... %e A359737 d : 0 1 2 1 0 4 1 1 7 6 7 4 1 2 7 ... %o A359737 (PARI) spine(fibonacci, 200) \\ \\ See A359734 for spine() %Y A359737 Cf. A296239 (distance from the nearest Fibonacci number), A000045 (the Fibonacci numbers). %Y A359737 Cf. A359734, A359736 (similar for primes and squares). %K A359737 nonn,base %O A359737 0,2 %A A359737 _M. F. Hasler_ and _Eric Angelini_, Jan 12 2023