This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359739 #9 Jan 18 2023 09:34:20 %S A359739 1,1,5,28,865,9626,758701,12606280,1872570113,41351249980, %T A359739 9925656304501,273345587759696,96567039881462305,3185756105692821688, %U A359739 1555524449985942662045,59790093545794928817376,38565845285812075675023361,1692346747225524397926264080,1393672439437011815394433559653 %N A359739 a(n) = Sum_{j=0..n, j even} binomial(n, j) * oddfactorial(j/2) * n^j, where oddfactorial(n) = (2*n)! / (2^n*n!). %F A359739 Let K(n, x) = 2^(n/2)*(-1/x^2)^(-n/2)*KummerU(-n/2, 1/2, -1/(2*x^2)) denote the Kummer polynomials, defined in A359760. %F A359739 a(n) = K(n, n) for n >= 1. %p A359739 A359739 := n -> ifelse(n=0, 1, KummerU(-n/2, 1/2, -1/(2*n^2))*(-1/(2*n^2))^(-n/2)): seq(simplify(A359739(n)), n = 0..18); %o A359739 (Python) %o A359739 from math import factorial, comb %o A359739 def oddfactorial(n: int) -> int: return factorial(2 * n) // (2**n * factorial(n)) %o A359739 def a(n: int) -> int: %o A359739 return sum(comb(n, j) * oddfactorial(j//2) * n**j for j in range(0, n+1, 2)) %o A359739 print([a(n) for n in range(19)]) %Y A359739 Cf. A359760. %K A359739 nonn %O A359739 0,3 %A A359739 _Peter Luschny_, Jan 12 2023