cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359754 Positions of first appearances in the sequence of weighted sums of reversed prime indices (A318283).

This page as a plain text file.
%I A359754 #6 Jan 16 2023 11:14:59
%S A359754 1,2,3,4,6,8,10,12,16,18,19,24,27,32,36,43,48,59,61,64,67,71,79,83,89,
%T A359754 97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,
%U A359754 181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269
%N A359754 Positions of first appearances in the sequence of weighted sums of reversed prime indices (A318283).
%C A359754 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A359754 The weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i.
%e A359754 The terms together with their prime indices begin:
%e A359754     1: {}
%e A359754     2: {1}
%e A359754     3: {2}
%e A359754     4: {1,1}
%e A359754     6: {1,2}
%e A359754     8: {1,1,1}
%e A359754    10: {1,3}
%e A359754    12: {1,1,2}
%e A359754    16: {1,1,1,1}
%e A359754    18: {1,2,2}
%e A359754    19: {8}
%e A359754    24: {1,1,1,2}
%e A359754    27: {2,2,2}
%e A359754    32: {1,1,1,1,1}
%e A359754    36: {1,1,2,2}
%e A359754    43: {14}
%e A359754    48: {1,1,1,1,2}
%t A359754 nn=100;
%t A359754 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A359754 ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
%t A359754 seq=Table[ots[Reverse[primeMS[n]]],{n,1,nn}];
%t A359754 Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&]
%Y A359754 Positions of first appearances in A318283, unreversed A304818.
%Y A359754 This is the sorted version of A359679.
%Y A359754 The zero-based version is A359680, unreversed A359675.
%Y A359754 The unreversed version is A359755, unsorted A359682.
%Y A359754 A053632 counts compositions by weighted sum.
%Y A359754 A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
%Y A359754 A320387 counts multisets by weighted sum, zero-based A359678.
%Y A359754 A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.
%Y A359754 Cf. A029931, A089633, A124757, A243055, A358194, A359497, A359674, A359677, A359681, A359683.
%K A359754 nonn
%O A359754 1,2
%A A359754 _Gus Wiseman_, Jan 15 2023