cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359755 Positions of first appearances in the sequence of weighted sums of prime indices (A304818).

This page as a plain text file.
%I A359755 #6 Jan 16 2023 11:15:03
%S A359755 1,2,3,4,6,7,8,10,12,15,16,18,20,24,26,28,36,40,46,48,50,52,56,62,68,
%T A359755 74,76,86,88,92,94,106,107,118,122,124,131,134,136,142,146,152,158,
%U A359755 164,166,173,178,188,193,194,199,202,206,214,218,226,229,236,239,254
%N A359755 Positions of first appearances in the sequence of weighted sums of prime indices (A304818).
%C A359755 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A359755 The weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i.
%e A359755 The terms together with their prime indices begin:
%e A359755     1: {}
%e A359755     2: {1}
%e A359755     3: {2}
%e A359755     4: {1,1}
%e A359755     6: {1,2}
%e A359755     7: {4}
%e A359755     8: {1,1,1}
%e A359755    10: {1,3}
%e A359755    12: {1,1,2}
%e A359755    15: {2,3}
%e A359755    16: {1,1,1,1}
%e A359755    18: {1,2,2}
%e A359755    20: {1,1,3}
%e A359755    24: {1,1,1,2}
%t A359755 nn=1000;
%t A359755 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A359755 ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
%t A359755 seq=Table[ots[primeMS[n]],{n,1,nn}];
%t A359755 Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&]
%Y A359755 The version for standard compositions is A089633, zero-based A359756.
%Y A359755 Positions of first appearances in A304818, reverse A318283.
%Y A359755 The zero-based version is A359675, unsorted A359676.
%Y A359755 The reverse zero-based version is A359680, unsorted A359681.
%Y A359755 This is the sorted version of A359682, reverse A359679.
%Y A359755 The reverse version is A359754.
%Y A359755 A053632 counts compositions by weighted sum.
%Y A359755 A112798 lists prime indices, length A001222, sum A056239.
%Y A359755 A320387 counts multisets by weighted sum, zero-based A359678.
%Y A359755 A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.
%Y A359755 Cf. A029931, A124757, A243055, A358194, A359497, A359674, A359683.
%K A359755 nonn
%O A359755 1,2
%A A359755 _Gus Wiseman_, Jan 15 2023