This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359756 #6 Jan 19 2023 11:10:50 %S A359756 0,3,6,7,13,14,15,27,29,30,31,55,59,61,62,63,111,119,123,125,126 %N A359756 First position of n in the sequence of zero-based weighted sums of standard compositions (A124757), if we start with position 0. %C A359756 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %C A359756 The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i. %C A359756 Is this sequence strictly increasing? %H A359756 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %F A359756 Appears to be the complement of A083329 in A089633. %e A359756 The terms together with their standard compositions begin: %e A359756 0: () %e A359756 3: (1,1) %e A359756 6: (1,2) %e A359756 7: (1,1,1) %e A359756 13: (1,2,1) %e A359756 14: (1,1,2) %e A359756 15: (1,1,1,1) %e A359756 27: (1,2,1,1) %e A359756 29: (1,1,2,1) %e A359756 30: (1,1,1,2) %e A359756 31: (1,1,1,1,1) %t A359756 nn=10; %t A359756 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A359756 wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}]; %t A359756 seq=Table[wts[stc[n]],{n,0,2^(nn-1)}]; %t A359756 Table[Position[seq,k][[1,1]]-1,{k,0,nn}] %Y A359756 The one-based version is A089633, for prime indices A359682. %Y A359756 First index of n in A124757, reverse A231204. %Y A359756 The version for prime indices is A359676, reverse A359681. %Y A359756 A053632 counts compositions by zero-based weighted sum. %Y A359756 A066099 lists standard compositions. %Y A359756 A304818 gives weighted sums of prime indices, reverse A318283. %Y A359756 A320387 counts multisets by weighted sum, zero-based A359678. %Y A359756 Cf. A000120, A029931, A059893, A070939, A083329, A359043, A359674. %K A359756 nonn,more %O A359756 0,2 %A A359756 _Gus Wiseman_, Jan 17 2023