cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359767 Numbers k such that A065043(k) = 1 but A359764(k) = 0, where A359764 is the parity of Dirichlet inverse of the former (which is the characteristic function of the numbers with an even number of prime factors).

This page as a plain text file.
%I A359767 #8 Jan 13 2023 16:25:43
%S A359767 16,36,64,81,96,100,160,196,216,224,225,240,256,336,352,360,384,416,
%T A359767 441,484,486,504,528,540,544,560,576,600,608,624,625,640,676,729,736,
%U A359767 756,792,810,816,880,896,900,912,928,936,960,992,1000,1024,1040,1089,1104,1134,1156,1176,1184,1188,1215,1224,1225
%N A359767 Numbers k such that A065043(k) = 1 but A359764(k) = 0, where A359764 is the parity of Dirichlet inverse of the former (which is the characteristic function of the numbers with an even number of prime factors).
%o A359767 (PARI)
%o A359767 A065043(n) = (1 - (bigomega(n)%2));
%o A359767 memoA359763 = Map();
%o A359767 A359763(n) = if(1==n,1,my(v); if(mapisdefined(memoA359763,n,&v), v, v = -sumdiv(n,d,if(d<n,A065043(n/d)*A359763(d),0)); mapput(memoA359763,n,v); (v)));
%o A359767 A359764(n) = (A359763(n)%2);
%o A359767 isA359767(n) = (A065043(n)&&!(A359764(n)));
%Y A359767 Cf. A065043, A359763, A359764, A359765.
%Y A359767 Cf. also A359784.
%Y A359767 Setwise difference A028260 \ A359765.
%Y A359767 Setwise difference A359766 \ A026424.
%Y A359767 Subsequence of A013929.
%K A359767 nonn
%O A359767 1,1
%A A359767 _Antti Karttunen_, Jan 13 2023