This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359777 #5 Jan 15 2023 15:10:30 %S A359777 4,8,16,32,36,60,64,72,81,84,100,120,128,132,140,144,156,162,168,196, %T A359777 200,204,220,225,228,240,256,260,264,276,280,288,308,312,324,336,340, %U A359777 348,364,372,380,392,400,408,440,441,444,450,456,460,476,480,484,492,512,516,520,528,532,540,552,560,564 %N A359777 Numbers k such that A356163(k) = 1 but A359774(k) = 0, where A359774 is the parity of Dirichlet inverse of the former (which is the characteristic function of the numbers with an even sum of prime factors, with repetition). %F A359777 {k | A356163(k)-A359774(k) == 1}. %o A359777 (PARI) %o A359777 A356163(n) = (1-(((n=factor(n))[, 1]~*n[, 2])%2)); \\ After code in A001414. %o A359777 memoA359773 = Map(); %o A359777 A359773(n) = if(1==n,1,my(v); if(mapisdefined(memoA359773,n,&v), v, v = -sumdiv(n,d,if(d<n,A356163(n/d)*A359773(d),0)); mapput(memoA359773,n,v); (v))); %o A359777 A359774(n) = (A359773(n)%2); %o A359777 isA359767(n) = (A356163(n)&&!(A359774(n))); %Y A359777 Cf. A001414, A356163, A359773, A359774. %Y A359777 Setwise difference A036349 \ A359775. %Y A359777 Setwise difference A359776 \ A335657. %Y A359777 Cf. also A359767, A359784. %K A359777 nonn %O A359777 1,1 %A A359777 _Antti Karttunen_, Jan 15 2023