cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359777 Numbers k such that A356163(k) = 1 but A359774(k) = 0, where A359774 is the parity of Dirichlet inverse of the former (which is the characteristic function of the numbers with an even sum of prime factors, with repetition).

This page as a plain text file.
%I A359777 #5 Jan 15 2023 15:10:30
%S A359777 4,8,16,32,36,60,64,72,81,84,100,120,128,132,140,144,156,162,168,196,
%T A359777 200,204,220,225,228,240,256,260,264,276,280,288,308,312,324,336,340,
%U A359777 348,364,372,380,392,400,408,440,441,444,450,456,460,476,480,484,492,512,516,520,528,532,540,552,560,564
%N A359777 Numbers k such that A356163(k) = 1 but A359774(k) = 0, where A359774 is the parity of Dirichlet inverse of the former (which is the characteristic function of the numbers with an even sum of prime factors, with repetition).
%F A359777 {k | A356163(k)-A359774(k) == 1}.
%o A359777 (PARI)
%o A359777 A356163(n) = (1-(((n=factor(n))[, 1]~*n[, 2])%2)); \\ After code in A001414.
%o A359777 memoA359773 = Map();
%o A359777 A359773(n) = if(1==n,1,my(v); if(mapisdefined(memoA359773,n,&v), v, v = -sumdiv(n,d,if(d<n,A356163(n/d)*A359773(d),0)); mapput(memoA359773,n,v); (v)));
%o A359777 A359774(n) = (A359773(n)%2);
%o A359777 isA359767(n) = (A356163(n)&&!(A359774(n)));
%Y A359777 Cf. A001414, A356163, A359773, A359774.
%Y A359777 Setwise difference A036349 \ A359775.
%Y A359777 Setwise difference A359776 \ A335657.
%Y A359777 Cf. also A359767, A359784.
%K A359777 nonn
%O A359777 1,1
%A A359777 _Antti Karttunen_, Jan 15 2023