This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359778 #13 Jan 17 2023 10:01:03 %S A359778 1,1,1,1,1,2,1,1,2,2,1,2,1,2,2,1,1,4,1,2,2,2,1,2,2,2,2,2,1,5,1,1,2,2, %T A359778 2,5,1,2,2,2,1,5,1,2,4,2,1,2,2,4,2,2,1,5,2,2,2,2,1,6,1,2,4,1,2,5,1,2, %U A359778 2,5,1,5,1,2,4,2,2,5,1,2,3,2,1,6,2,2,2,2,1,11,2,2,2,2,2,2,1,4,4,5,1,5,1,2,5,2,1,7 %N A359778 Number of factorizations of n into factors not divisible by p^p for any prime p (terms of A048103). %H A359778 Antti Karttunen, <a href="/A359778/b359778.txt">Table of n, a(n) for n = 1..65537</a> %F A359778 a(n) <= A001055(n). %F A359778 For all n >= 0, a(A276086(n)) = A317836(n). %e A359778 108 has in total 16 = A001055(108) factorizations: %e A359778 Factors Are there any factors that are divisible by p^p, %e A359778 where p is any prime? %e A359778 ------------------------------------------------------------------- %e A359778 [3, 3, 3, 2, 2] No %e A359778 [4, 3, 3, 3] Yes (4, divisible by 2^2) %e A359778 [6, 3, 3, 2] No %e A359778 [6, 6, 3] No %e A359778 [9, 3, 2, 2] No %e A359778 [9, 4, 3] Yes (4) %e A359778 [9, 6, 2] No %e A359778 [12, 3, 3] Yes (12, divisible by 2^2) %e A359778 [12, 9] Yes (12) %e A359778 [18, 3, 2] No %e A359778 [18, 6] No %e A359778 [27, 2, 2] Yes (27, divisible by 3^3) %e A359778 [27, 4] Yes (both 27 and 4) %e A359778 [36, 3] Yes (36) %e A359778 [54, 2] Yes (54, divisible by 3^3) %e A359778 [108] Yes (108 = 2^2 * 3^3) %e A359778 Thus only seven of the factorizations satisfy the criterion, and a(108) = 7. %o A359778 (PARI) %o A359778 A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 1]>f[k, 2])); }; %o A359778 A359778(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (d<=m) && A359550(d), s += A359778(n/d, d))); (s)); %Y A359778 Cf. A001055, A048103, A276086, A317836, A359550, A359779 (Dirichlet inverse). %Y A359778 Cf. also A358236. %K A359778 nonn %O A359778 1,6 %A A359778 _Antti Karttunen_, Jan 16 2023