This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359794 #13 Jan 29 2025 14:33:28 %S A359794 1,2,3,5,6,7,8,9,10,11,13,14,15,17,18,19,21,22,23,24,25,26,27,29,30, %T A359794 31,32,33,34,35,37,38,39,40,41,42,43,45,46,47,49,50,51,53,54,55,56,57, %U A359794 58,59,61,62,63,65,66,67,69,70,71,72,73,74,75,77,78,79,81,82,83,85,86,87,88,89,90,91,93,94 %N A359794 Union of odd numbers and numbers with an odd 2-adic valuation. %C A359794 Numbers not of the form (2*m - 1)*4^k where m >= 1, k >= 1. %C A359794 Numbers k for which the parities of k and A048675(k) differ. %C A359794 The asymptotic density of this sequence is 5/6. - _Amiram Eldar_, Jan 25 2023 %t A359794 Select[Range[100], OddQ[#] || OddQ[IntegerExponent[#, 2]] &] (* _Amiram Eldar_, Jan 25 2023 *) %o A359794 (PARI) isA359794(n) = A359832(n); %o A359794 (Python) %o A359794 def A359794(n): %o A359794 def f(x): %o A359794 c, s = n+(x>>1), bin(x)[2:] %o A359794 l = len(s) %o A359794 for i in range(l&1,l,2): %o A359794 c -= int(s[i])+int('0'+s[:i],2) %o A359794 return c %o A359794 m, k = n, f(n) %o A359794 while m != k: m, k = k, f(k) %o A359794 return m # _Chai Wah Wu_, Jan 29 2025 %Y A359794 Union of A005408 and A036554. %Y A359794 Complement of A108269. %Y A359794 Cf. A048675, A359832 (characteristic function). %K A359794 nonn %O A359794 1,2 %A A359794 _Antti Karttunen_, Jan 25 2023