This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359802 #41 May 12 2023 03:21:32 %S A359802 2,3,5,7,11,13,17,19,23,29,6,9,15,21,33,39,51,57,69,87,10,15,25,35,55, %T A359802 65,85,95,115,145,14,21,35,49,77,91,119,133,161,203,22,33,55,77,121, %U A359802 143,187,209,253,319,26,39,65,91,143,169,221,247,299,377,34,51 %N A359802 a(n) = product prime(d + 1), where d ranges over all the decimal digits of n. %H A359802 David A. Corneth, <a href="/A359802/b359802.txt">Table of n, a(n) for n = 0..10000</a> %e A359802 a(0) = prime(0+1) = prime(1) = 2. %e A359802 a(5) = prime(5+1) = prime(6) = 13. %e A359802 a(20) = prime(2+1) * prime(0+1) = prime(3) * prime(1) = 5 * 2 = 10. %p A359802 a:= n-> mul(ithprime(d+1), d=convert(n, base, 10)): %p A359802 seq(a(n), n=0..171); # _Alois P. Heinz_, May 11 2023 %o A359802 (Python) %o A359802 def a(n): %o A359802 primes = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29) %o A359802 product = 1 %o A359802 for d in str(n): %o A359802 product *= primes[int(d)] %o A359802 return product %o A359802 (PARI) a(n) = my(d=digits(n)); if (n==0, d=[0]); prod(k=1, #d, prime(d[k]+1)); \\ _Michel Marcus_, May 12 2023 %Y A359802 Very similar to A113581. %Y A359802 Fixed points are in A115078. %K A359802 nonn,easy,base %O A359802 0,1 %A A359802 _Fabian I. Garcia_, May 11 2023