This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359806 #6 Jan 14 2023 08:46:12 %S A359806 2,1,6,5,4,3,14,9,8,40,32,24,60,7,20,17,16,144,128,15,72,64,512,12, %T A359806 256,120,13824,39,2048,35,62,11,1056,544,30,288,4096,1008,28,10,1024, %U A359806 156,5504,1408,112,1424,8192,96,1016,51200,102,240,32768,27648,248,78 %N A359806 Lexicographically earliest sequence of distinct positive terms such that for any n > 0 and any k > 0, floor((2^k) / n) AND floor((2^k) / a(n)) = 0 (where AND denotes the bitwise AND operator). %C A359806 In other words, for any n > 0, the binary expansions of 1/n and of 1/a(n) have no common one bit; in this sense, this sequence is similar to A238757. %C A359806 This sequence is a self-inverse permutation of the positive integers. %H A359806 Rémy Sigrist, <a href="/A359806/a359806.txt">C++ program</a> %H A359806 Rémy Sigrist, <a href="/A359806/a359806.gp.txt">PARI program</a> %H A359806 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A359806 The first terms, alongside the binary expansions of 1/n and 1/a(n) (with periodic parts in parentheses), are: %e A359806 n a(n) bin(1/n) bin(1/a(n)) %e A359806 -- ---- -------------- ----------- %e A359806 1 2 1.(0) 0.1(0) %e A359806 2 1 0.1(0) 1.(0) %e A359806 3 6 0.(01) 0.0(01) %e A359806 4 5 0.01(0) 0.(0011) %e A359806 5 4 0.(0011) 0.01(0) %e A359806 6 3 0.0(01) 0.(01) %e A359806 7 14 0.(001) 0.0(001) %e A359806 8 9 0.001(0) 0.(000111) %e A359806 9 8 0.(000111) 0.001(0) %e A359806 10 40 0.0(0011) 0.000(0011) %e A359806 11 32 0.(0001011101) 0.00001(0) %e A359806 12 24 0.00(01) 0.000(01) %o A359806 (C++) See Links section. %o A359806 (PARI) See Links section. %Y A359806 See A306231 for a similar sequence. %Y A359806 Cf. A238757. %K A359806 nonn,base %O A359806 1,1 %A A359806 _Rémy Sigrist_, Jan 13 2023