This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359813 #14 Feb 04 2023 20:43:00 %S A359813 3,12,45,171,619,2560,10774,46708,202635,904603,4073767,18604618, %T A359813 85445767,395944114,1837763447,8600149593 %N A359813 Number of primes < 10^n with exactly one odd decimal digit. %C A359813 a(n) =~ Pi(10^n)/2^(n-1). _Robert G. Wilson v_, Feb 04 2023 %e A359813 a(2)=12 as there are 12 primes less than 100 with exactly one odd decimal digit: 3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89. %t A359813 c=1; k=0; lst={}; f[n_] := Block[{e = 10 FromDigits[2 IntegerDigits[n, 5]]}, Length@ Select[e + {1, 3, 7, 9}, PrimeQ]]; %t A359813 Do[ While[k< 5^n, c+=f@k; k++]; Print[c], {n, 0, 16}] (* _Robert G. Wilson v_, Feb 04 2023 *) %o A359813 (Python) %o A359813 from sympy import isprime %o A359813 from itertools import product %o A359813 def a(n): %o A359813 c=3 %o A359813 if n==1:return(c) %o A359813 x=[[1,7],[1,3,7,9],[3,9],'2468','02468'] %o A359813 for k in range(2,n+1): %o A359813 for f in x[3]: %o A359813 for m in product(x[4], repeat=k-2): %o A359813 s = int(f+"".join(m))*10 %o A359813 t=s%3 %o A359813 for last in x[t]: %o A359813 if isprime(s+last): %o A359813 c+= 1 %o A359813 return(c) %o A359813 print([a(n) for n in range(1,7)]) %o A359813 (Python) %o A359813 from sympy import primerange %o A359813 def a(n): %o A359813 p=list(primerange(3,10**n)) %o A359813 return(sum(1 for k in p if sum(str(k).count(d) for d in '13579')==1)) %o A359813 print([a(n) for n in range(1,7)]) %Y A359813 Cf. A030096, A068690, A154764, A358685, A358690. %K A359813 base,nonn,more %O A359813 1,1 %A A359813 _Zhining Yang_, Jan 14 2023 %E A359813 a(16) from _Robert G. Wilson v_, Feb 04 2023