cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359823 Dirichlet inverse of A359820, where A359820 is the characteristic function of numbers whose parity differs from the parity of their arithmetic derivative (A003415).

This page as a plain text file.
%I A359823 #8 Jan 14 2023 18:36:43
%S A359823 1,-1,0,1,0,-1,0,-1,-1,-1,0,2,0,-1,-1,1,0,1,0,2,-1,-1,0,-3,-1,-1,0,2,
%T A359823 0,1,0,-1,-1,-1,-1,0,0,-1,-1,-3,0,1,0,2,0,-1,0,4,-1,1,-1,2,0,1,-1,-3,
%U A359823 -1,-1,0,1,0,-1,0,1,-1,1,0,2,-1,1,0,-2,0,-1,0,2,-1,1,0,4,0,-1,0,1,-1,-1,-1,-3,0,3,-1,2,-1,-1,-1,-5,0
%N A359823 Dirichlet inverse of A359820, where A359820 is the characteristic function of numbers whose parity differs from the parity of their arithmetic derivative (A003415).
%H A359823 Antti Karttunen, <a href="/A359823/b359823.txt">Table of n, a(n) for n = 1..65537</a>
%F A359823 a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A359820(n/d) * a(d).
%o A359823 (PARI)
%o A359823 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A359823 A359820(n) = ((n+A003415(n))%2);
%o A359823 memoA359823 = Map();
%o A359823 A359823(n) = if(1==n,1,my(v); if(mapisdefined(memoA359823,n,&v), v, v = -sumdiv(n,d,if(d<n,A359820(n/d)*A359823(d),0)); mapput(memoA359823,n,v); (v)));
%Y A359823 Cf. A000035, A003415, A359820, A359824 (parity of the terms).
%Y A359823 Cf. also A359763 [= a(A003961(n))], A359780.
%K A359823 sign
%O A359823 1,12
%A A359823 _Antti Karttunen_, Jan 14 2023