cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359838 Continued fraction for binary expansion of A359456 interpreted in base 2.

This page as a plain text file.
%I A359838 #20 Feb 16 2023 05:37:47
%S A359838 0,1,3,3,1,2,1,262143,3,1,3,3,1,
%T A359838 1532495540865888858358347027150309183618739122183602175,4,3,1,3,
%U A359838 262143,1,2,1,3,3,1
%N A359838 Continued fraction for binary expansion of A359456 interpreted in base 2.
%C A359838 The continued fraction of the number obtained by reading A359456 as a binary fraction.
%C A359838 Except for the first term, the only values that occur in this sequence are 1, 2, 3, 4 and values 2^A359458(m) - 1 for m > 2. The probabilities of occurrence P(a(n) = k) are given by:
%C A359838 P(a(n) = 1) = 1/3,
%C A359838 P(a(n) = 2) = 1/12,
%C A359838 P(a(n) = 3) = 1/3,
%C A359838 P(a(n) = 4) = 1/12 and
%C A359838 P(a(n) = 2^A359458(m)-1) = 1/(3*2^m) for m > 1.
%F A359838 a(n) = 1 if and only if n in A317538.
%F A359838 a(n) = 2 if and only if n in {24*m - 19 | m > 0} union {24*m - 4 | m > 0}.
%F A359838 a(n) = 3 if and only if n in A317539.
%F A359838 a(n) = 4 if and only if n in {12*m - 3*A014710(m-1) + 5 | m > 0}
%F A359838 a(n) = 2^A359458(m)-1 if and only if n in {3*2^(m-1)*(1+k*4) + 1 | k >= 0} union {3*2^(m-1)*(3+k*4) | k >= 0} for m > 1.
%Y A359838 Cf. A014710, A317538, A317539, A359456, A359458.
%Y A359838 Cf. A359457 (in base 10).
%K A359838 nonn,base,cofr
%O A359838 0,3
%A A359838 _A.H.M. Smeets_, Jan 14 2023