A359847 Oblong numbers k for which phi(k) is also an oblong number.
6, 42, 182, 650, 930, 4830, 7482, 9506, 12882, 13572, 16770, 79242, 167690, 181902, 228006, 289982, 380072, 3480090, 5209806, 6872262, 10102862, 16068072, 56002772, 56648202, 59174556, 70299840, 74831150, 123287712, 261517412, 342601590, 356322252, 455459622, 536223492, 1057452842
Offset: 1
Keywords
Examples
9506 is a term because 9506 = 97*98 and phi(9506) = 4032 = 63*64.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..269
- Eric Weisstein's World of Mathematics, Totient Function.
Programs
-
Maple
lastv:= 1: R:= NULL: count:= 0: for n from 3 while count < 50 do v:= numtheory:-phi(n); if issqr(4*v*lastv+1) then R:= R, n*(n-1); count:= count+1; fi; lastv:= v; od: R; # Robert Israel, Feb 15 2023
-
Mathematica
Select[Table[n*(n + 1), {n, 1, 100000}], IntegerQ @ Sqrt[4*EulerPhi[#] + 1] &] (* Amiram Eldar, Jan 15 2023 *) k = pk0 = pk1 = 1; lst = {}; While[k < 10000, If[ IntegerQ@ Sqrt[4*pk0*pk1 + 1], AppendTo[lst, k (k + 1)]]; k++; pk0 = pk1; pk1 = EulerPhi[k + 1]]; lst (* Robert G. Wilson v, Feb 14 2023 *)
-
PARI
for(k=1, 10^5, my(n=k*(k+1), p=eulerphi(n)); if(issquare(4*p+1), print1(n,", ")))
Comments