cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359847 Oblong numbers k for which phi(k) is also an oblong number.

Original entry on oeis.org

6, 42, 182, 650, 930, 4830, 7482, 9506, 12882, 13572, 16770, 79242, 167690, 181902, 228006, 289982, 380072, 3480090, 5209806, 6872262, 10102862, 16068072, 56002772, 56648202, 59174556, 70299840, 74831150, 123287712, 261517412, 342601590, 356322252, 455459622, 536223492, 1057452842
Offset: 1

Views

Author

Alexandru Petrescu, Jan 15 2023

Keywords

Comments

Since k and k+1 are relatively prime, the calculation of phi(k)*phi(k+1) is faster than that of phi(k*(k+1)). - Robert G. Wilson v, Feb 14 2023

Examples

			9506 is a term because 9506 = 97*98 and phi(9506) = 4032 = 63*64.
		

Crossrefs

Intersection of A002378 and A236386.

Programs

  • Maple
    lastv:= 1: R:= NULL: count:= 0:
    for n from 3 while count < 50 do
      v:= numtheory:-phi(n);
      if issqr(4*v*lastv+1) then
        R:= R, n*(n-1); count:= count+1;
        fi;
      lastv:= v;
    od:
    R; # Robert Israel, Feb 15 2023
  • Mathematica
    Select[Table[n*(n + 1), {n, 1, 100000}], IntegerQ @ Sqrt[4*EulerPhi[#] + 1] &] (* Amiram Eldar, Jan 15 2023 *)
    k = pk0 = pk1 = 1; lst = {}; While[k < 10000, If[ IntegerQ@ Sqrt[4*pk0*pk1 + 1], AppendTo[lst, k (k + 1)]]; k++; pk0 = pk1; pk1 = EulerPhi[k + 1]]; lst (* Robert G. Wilson v, Feb 14 2023 *)
  • PARI
    for(k=1, 10^5, my(n=k*(k+1), p=eulerphi(n)); if(issquare(4*p+1), print1(n,", ")))