This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359885 #19 Jun 25 2024 02:07:10 %S A359885 1,44,2512,145088,8383744,484453376,27994083328,1617634967552, %T A359885 93474855387136,5401434047381504,312121261353336832, %U A359885 18035892123135377408,1042202005934895529984,60223526164332403490816,3480009713100277581611008,201091971436982107249836032 %N A359885 Number of 3-dimensional tilings of a 2 X 2 X 3n box using trominos (three 1 X 1 X 1 cubes). %C A359885 The first recurrence is derived in A359884, "3d-tilings of a 2 X 2 X n box" as a special case of a more general tiling problem: III, example 5. %C A359885 The example uses two cross section profiles with two overstanding cubes: C (with a common square) and D (with one common edge). %H A359885 Paolo Xausa, <a href="/A359885/b359885.txt">Table of n, a(n) for n = 0..500</a> %H A359885 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (60,-128). %F A359885 G.f.: (1 - 16*x) / (1 - 60*x + 128*x^2). %F A359885 a(n) = 44*a(n-1) + 6*e(n-1) where e(n) = 96*a(n-1) + 16*e(n-1) with a(n),e(n) <= 0 for n < =0 except for a(0)=1. %F A359885 a(n) = 60*a(n-1) - 128*a(n-2) for n >= 2. %F A359885 E.g.f.: exp(30*x)*cosh(2*sqrt(193)*x) + 7*exp(30*x)*sinh(2*sqrt(193)*x)/sqrt(193). - _Stefano Spezia_, Jan 21 2023 %e A359885 a(1)=44. %e A359885 t1,t2,t3 is a tromino standing on 1,2,3 cubes respectively. %e A359885 1) Two t2-tiles generate a C-profile or a D-profile in 4 ways each. %e A359885 C,D-profile: 4,2 rotation images, D-profile: 2 ways for each image. %e A359885 C-profile D-profiles %e A359885 . ___ ___ ___ %e A359885 . /__ /| ___ /__ /| ___ /__ /| %e A359885 . /__ /| |___ /__ /| | | /__ /| | | %e A359885 .| | |/__ /| | | |___| | | | |___| | %e A359885 .| |/__ /| | | |/__ /| | | |/__ / | %e A359885 .| | |/ | | |/ | | | / %e A359885 .|_______|/ |_______|/ |___|___|/ %e A359885 2) t1+t3 generates a C-profile in 4*2=8 ways. %e A359885 . ___ %e A359885 . / /| ______ %e A359885 . /__ / | _______ /_____ /| _______ %e A359885 .| | / /__ /| | | | /__ /| %e A359885 .| | | | /__ / | or | __|/ | /__ / | %e A359885 .| | | |_| | / | | | |_| | / %e A359885 .|___|/ |___|/ |___|/ |___|/ %e A359885 1,2) There are 12 ways to generate a C-profile. The connection of two C-profiles is a 2 X 2 X 3 cuboid. Starting with a C-profile, there are 4*3*3=36 ways to generate this cuboid. %e A359885 3) There are 4*2=8 ways to generate the cuboid by starting with a D-profile. Therefore, a(1)=36+8=44. %e A359885 . ___ %e A359885 . / /| ___ ___ %e A359885 . /__ / | ___ /__ /| / /| %e A359885 .| | | /__ /| | | /__ / | %e A359885 .|___|/| | | | |___| | | | / %e A359885 . |___|/ | |/__ /| | | | | or %e A359885 . | | |/ | | | %e A359885 . |_______|/ |___|/ %e A359885 . _______ %e A359885 . /______ /| ___ %e A359885 .| | | ___ /__ /| _______ %e A359885 .| ___|/ /__ /| | | /______ /| %e A359885 .| | | | | |___| | | | | %e A359885 .|___|/ | |/__ /| | |___ | | %e A359885 . | | |/ | | | %e A359885 . |_______|/ |___|/ %t A359885 LinearRecurrence[{60, -128}, {1, 44}, 20] (* _Paolo Xausa_, Jun 24 2024 *) %o A359885 (Maxima) /* See A359884. */ %Y A359885 Cf. A006253, A001045, A335559, A359884, A359886. %K A359885 nonn,easy %O A359885 0,2 %A A359885 _Gerhard Kirchner_, Jan 20 2023