This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359887 #8 Jan 19 2023 11:10:12 %S A359887 1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0, %T A359887 0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,2,2,0,0,0,0,0,0,5,0,57,1,57,0,5,0,0,0, %U A359887 0,1,0,1,8,8,1,0,1,0,0,0,0,85,0,37,1,1,1,37,0,85,0,0 %N A359887 Square array A(n, k), n, k > 0, read by antidiagonals; A(n, k) is the numerator of the unique rational q such that for any m, floor(2^m/n) AND floor(2^m/k) = floor(q*2^m) (where AND denotes the bitwise AND operator); see A359888 for the denominators. %C A359887 A(n, k)/A359888(n, k) can be interpreted as (1/n) AND (1/k) (assuming that inverses of powers of 2 have terminating binary expansions). %H A359887 Rémy Sigrist, <a href="/A359887/a359887.gp.txt">PARI program</a> %F A359887 A(n, k) = A(k, n). %F A359887 A(n, n) = 1. %F A359887 A(n, 2*n) = 0 iff n belongs to A300630. %F A359887 A(A306231(n), A306231(n+1)) = 0. %F A359887 A(n, A359806(n)) = 0. %e A359887 Square array A(n, k) begins: %e A359887 n\k | 1 2 3 4 5 6 7 8 9 10 11 12 %e A359887 ----+------------------------------------------------------ %e A359887 1 | 1 0 0 0 0 0 0 0 0 0 0 0 %e A359887 2 | 0 1 0 0 0 0 0 0 0 0 0 0 %e A359887 3 | 0 0 1 1 1 0 1 0 5 1 85 1 %e A359887 4 | 0 0 1 1 0 0 0 0 0 0 0 0 %e A359887 5 | 0 0 1 0 1 2 57 1 37 1 837 1 %e A359887 6 | 0 0 0 0 2 1 8 1 2 1 8 0 %e A359887 7 | 0 0 1 0 57 8 1 1 1 1 1195 1 %e A359887 8 | 0 0 0 0 1 1 1 1 0 0 0 0 %e A359887 9 | 0 0 5 0 37 2 1 0 1 11 256687 5 %e A359887 10 | 0 0 1 0 1 1 1 0 11 1 749 1 %e A359887 11 | 0 0 85 0 837 8 1195 0 256687 749 1 85 %e A359887 12 | 0 0 1 0 1 0 1 0 5 1 85 1 %o A359887 (PARI) See Links section. %Y A359887 Cf. A300630, A306231, A359806, A359888 (denominators). %K A359887 nonn,base,frac,tabf %O A359887 1,50 %A A359887 _Rémy Sigrist_, Jan 17 2023