A359888 Square array A(n, k), n, k > 0, read by antidiagonals; A(n, k) is the denominator of the unique rational q such that for any m, floor(2^m/n) AND floor(2^m/k) = floor(q*2^m) (where AND denotes the bitwise AND operator); see A359887 for the numerators.
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 15, 4, 15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 63, 1, 5, 1, 63, 1, 1, 1, 1, 1, 1, 15, 15, 1, 1, 1, 1, 1, 1, 63, 1, 455, 6, 455, 1, 63, 1, 1, 1, 1, 15, 1, 8, 63, 63, 8, 1, 15, 1, 1, 1, 1, 1023, 1, 585, 8, 7, 8, 585, 1, 1023, 1, 1
Offset: 1
Examples
Square array A(n, k) begins: n\k | 1 2 3 4 5 6 7 8 9 10 ----+----------------------------------------------------- 1 | 1 1 1 1 1 1 1 1 1 1 2 | 1 2 1 1 1 1 1 1 1 1 3 | 1 1 3 4 15 1 63 1 63 15 4 | 1 1 4 4 1 1 1 1 1 1 5 | 1 1 15 1 5 15 455 8 585 15 6 | 1 1 1 1 15 6 63 8 63 30 7 | 1 1 63 1 455 63 7 8 63 455 8 | 1 1 1 1 8 8 8 8 1 1 9 | 1 1 63 1 585 63 63 1 9 117 10 | 1 1 15 1 15 30 455 1 117 10 11 | 1 1 1023 1 11275 1023 76461 1 3243933 11275 12 | 1 1 12 1 15 1 63 1 63 15
Links
- Rémy Sigrist, PARI program
Programs
-
PARI
See Links section.
Formula
A(n, k) = A(k, n).
A(n, n) = n.
Comments