This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359893 #7 Jan 22 2023 09:16:56 %S A359893 1,1,0,1,1,1,0,0,1,2,0,2,0,0,0,1,3,0,1,2,0,0,0,0,1,4,1,2,0,3,0,0,0,0, %T A359893 0,1,6,1,3,0,1,3,0,0,0,0,0,0,1,8,1,6,0,2,0,4,0,0,0,0,0,0,0,1,11,2,7,1, %U A359893 3,0,1,4,0,0,0,0,0,0,0,0,1 %N A359893 Triangle read by rows where T(n,k) is the number of integer partitions of n with median k, where k ranges from 1 to n in steps of 1/2. %C A359893 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A359893 Triangle begins: %e A359893 1 %e A359893 1 0 1 %e A359893 1 1 0 0 1 %e A359893 2 0 2 0 0 0 1 %e A359893 3 0 1 2 0 0 0 0 1 %e A359893 4 1 2 0 3 0 0 0 0 0 1 %e A359893 6 1 3 0 1 3 0 0 0 0 0 0 1 %e A359893 8 1 6 0 2 0 4 0 0 0 0 0 0 0 1 %e A359893 11 2 7 1 3 0 1 4 0 0 0 0 0 0 0 0 1 %e A359893 15 2 10 3 4 0 2 0 5 0 0 0 0 0 0 0 0 0 1 %e A359893 20 3 13 3 7 0 3 0 1 5 0 0 0 0 0 0 0 0 0 0 1 %e A359893 26 4 19 3 11 1 4 0 2 0 6 0 0 0 0 0 0 0 0 0 0 0 1 %e A359893 For example, row n = 8 counts the following partitions: %e A359893 611 4211 422 . 332 . 44 . . . . . . . 8 %e A359893 5111 521 431 53 %e A359893 32111 2222 62 %e A359893 41111 3221 71 %e A359893 221111 3311 %e A359893 311111 22211 %e A359893 2111111 %e A359893 11111111 %t A359893 Table[Length[Select[IntegerPartitions[n], Median[#]==k&]],{n,1,10},{k,1,n,1/2}] %Y A359893 Row sums are A000041. %Y A359893 Row lengths are 2n-1 = A005408(n-1). %Y A359893 Column k=1 is A027336(n+1). %Y A359893 For mean instead of median we have A058398, see also A008284, A327482. %Y A359893 The mean statistic is ranked by A326567/A326568. %Y A359893 Omitting half-steps gives A359901. %Y A359893 The odd-length case is A359902. %Y A359893 The median statistic is ranked by A360005(n)/2. %Y A359893 First appearances of medians are ranked by A360006, A360007. %Y A359893 A027193 counts odd-length partitions, strict A067659, ranked by A026424. %Y A359893 A067538 counts partitions w/ integer mean, strict A102627, ranked by A316413. %Y A359893 A240219 counts partitions w/ the same mean as median, complement A359894. %Y A359893 Cf. A325347, A349156, A359889, A359895, A359906, A359907, A360008. %K A359893 nonn,tabf %O A359893 1,10 %A A359893 _Gus Wiseman_, Jan 21 2023