This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359895 #11 Jan 21 2023 19:44:52 %S A359895 0,1,1,2,1,2,3,2,1,5,5,2,5,2,8,18,1,2,19,2,24,41,20,2,9,44,31,94,102, %T A359895 2,125,2,1,206,68,365,382,2,98,433,155,2,716,2,1162,2332,196,2,17, %U A359895 1108,563,1665,3287,2,3906,5474,2005,3083,509,2,9029 %N A359895 Number of odd-length integer partitions of n whose parts have the same mean as median. %C A359895 The length and median of such a partition are integers with product n. %H A359895 Andrew Howroyd, <a href="/A359895/b359895.txt">Table of n, a(n) for n = 0..1000</a> %F A359895 a(p) = 2 for prime p. - _Andrew Howroyd_, Jan 21 2023 %e A359895 The a(1) = 1 through a(9) = 5 partitions: %e A359895 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A359895 (111) (11111) (222) (1111111) (333) %e A359895 (321) (432) %e A359895 (531) %e A359895 (111111111) %e A359895 The a(15) = 18 partitions: %e A359895 (15) %e A359895 (5,5,5) %e A359895 (6,5,4) %e A359895 (7,5,3) %e A359895 (8,5,2) %e A359895 (9,5,1) %e A359895 (3,3,3,3,3) %e A359895 (4,3,3,3,2) %e A359895 (4,4,3,2,2) %e A359895 (4,4,3,3,1) %e A359895 (5,3,3,2,2) %e A359895 (5,3,3,3,1) %e A359895 (5,4,3,2,1) %e A359895 (5,5,3,1,1) %e A359895 (6,3,3,2,1) %e A359895 (6,4,3,1,1) %e A359895 (7,3,3,1,1) %e A359895 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) %t A359895 Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&Mean[#]==Median[#]&]],{n,0,30}] %o A359895 (PARI) \\ P(n, k, m) is g.f. for k parts of max size m. %o A359895 P(n, k, m)={polcoef(1/prod(i=1, m, 1 - y*x^i + O(x*x^n)), k, y)} %o A359895 a(n)={if(n==0, 0, sumdiv(n, d, if(d%2, my(m=n/d, h=d\2, r=n-m*(h+1)+h); polcoef(P(r, h, m)*P(r, h, r), r))))} \\ _Andrew Howroyd_, Jan 21 2023 %Y A359895 This is the odd-length case of A240219, complement A359894, strict A359897. %Y A359895 These partitions are ranked by A359891, complement A359892. %Y A359895 The complement is counted by A359896. %Y A359895 The strict case is A359899, complement A359900. %Y A359895 The version for factorizations is A359910. %Y A359895 A000041 counts partitions, strict A000009. %Y A359895 A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568. %Y A359895 A027193 counts odd-length partitions, strict A067659, ranked by A026424. %Y A359895 A067538 counts ptns with integer mean, strict A102627, ranked by A316413. %Y A359895 A237984 counts ptns containing their mean, strict A240850, ranked by A327473. %Y A359895 A325347 counts ptns with integer median, strict A359907, ranked by A359908. %Y A359895 A359893 and A359901 count partitions by median, odd-length A359902. %Y A359895 Cf. A008289, A316313, A327472, A327475, A327482, A359889, A359906. %K A359895 nonn %O A359895 0,4 %A A359895 _Gus Wiseman_, Jan 20 2023