This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359896 #7 Jan 21 2023 16:28:35 %S A359896 0,0,0,0,1,2,2,6,9,11,15,27,32,50,58,72,112,149,171,246,286,359,477, %T A359896 630,773,941,1181,1418,1749,2289,2668,3429,4162,4878,6074,7091,8590, %U A359896 10834,12891,15180,18491,22314,25845,31657,36394,42269,52547,62414,73576,85701 %N A359896 Number of odd-length integer partitions of n whose parts do not have the same mean as median. %e A359896 The a(4) = 1 through a(9) = 11 partitions: %e A359896 (211) (221) (411) (322) (332) (441) %e A359896 (311) (21111) (331) (422) (522) %e A359896 (421) (431) (621) %e A359896 (511) (521) (711) %e A359896 (22111) (611) (22221) %e A359896 (31111) (22211) (32211) %e A359896 (32111) (33111) %e A359896 (41111) (42111) %e A359896 (2111111) (51111) %e A359896 (2211111) %e A359896 (3111111) %t A359896 Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&Mean[#]!=Median[#]&]],{n,0,30}] %Y A359896 These partitions are ranked by A359892. %Y A359896 The any-length version is A359894, complement A240219, strict A359898. %Y A359896 The complement is counted by A359895, ranked by A359891. %Y A359896 The strict case is A359900, complement A359899. %Y A359896 A000041 counts partitions, strict A000009. %Y A359896 A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568. %Y A359896 A027193 counts odd-length partitions, strict A067659, ranked by A026424. %Y A359896 A067538 counts ptns with integer mean, strict A102627, ranked by A316413. %Y A359896 A237984 counts ptns containing their mean, strict A240850, ranked by A327473. %Y A359896 A325347 counts ptns with integer median, strict A359907, ranked by A359908. %Y A359896 A359893 and A359901 count partitions by median, odd-length A359902. %Y A359896 Cf. A008289, A066571, A316313, A327472, A327482, A359890, A359906, A359910. %K A359896 nonn %O A359896 0,6 %A A359896 _Gus Wiseman_, Jan 20 2023