This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359900 #7 Jan 21 2023 09:33:25 %S A359900 0,0,0,0,0,0,0,1,2,1,4,5,4,8,10,8,15,18,17,26,27,31,43,51,53,59,81,87, %T A359900 109,127,115,169,194,213,255,243,322,379,431,478,487,629,667,804,907, %U A359900 902,1151,1294,1439,1530,1674,2031,2290,2559,2829,2973,3296,3939 %N A359900 Number of strict odd-length integer partitions of n whose parts do not have the same mean as median. %e A359900 The a(7) = 1 through a(16) = 15 partitions (A=10, B=11, C=12, D=13): %e A359900 (421) (431) (621) (532) (542) (651) (643) (653) (762) (754) %e A359900 (521) (541) (632) (732) (652) (743) (843) (763) %e A359900 (631) (641) (831) (742) (752) (861) (853) %e A359900 (721) (731) (921) (751) (761) (942) (862) %e A359900 (821) (832) (842) (A32) (871) %e A359900 (841) (851) (A41) (943) %e A359900 (931) (932) (B31) (952) %e A359900 (A21) (941) (C21) (961) %e A359900 (A31) (A42) %e A359900 (B21) (A51) %e A359900 (B32) %e A359900 (B41) %e A359900 (C31) %e A359900 (D21) %e A359900 (64321) %t A359900 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&OddQ[Length[#]]&&Mean[#]!=Median[#]&]],{n,0,30}] %Y A359900 This is the strict case of A359896, complement A359895, ranked by A359892. %Y A359900 This is the odd-length case of A359898, complement A359897. %Y A359900 The complement is counted by A359899. %Y A359900 A000041 counts partitions, strict A000009. %Y A359900 A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568. %Y A359900 A008289 counts strict partitions by mean. %Y A359900 A027193 counts odd-length partitions, strict A067659, ranked by A026424. %Y A359900 A359893/A359901/A359902 count partitions by median, ranked by A360005. %Y A359900 Cf. A000016, A065795, A066571, A102627, A240850, A240851, A327475, A359894, A359906, A359907, A359910. %K A359900 nonn %O A359900 0,9 %A A359900 _Gus Wiseman_, Jan 21 2023