A359903 Numbers whose prime indices and prime signature have the same mean.
1, 2, 9, 88, 100, 125, 624, 756, 792, 810, 880, 900, 1312, 2401, 4617, 4624, 6240, 7392, 7560, 7920, 8400, 9261, 9604, 9801, 10648, 12416, 23424, 33984, 37760, 45792, 47488, 60912, 66176, 71552, 73920, 75200, 78720, 83592, 89216, 89984, 91264, 91648, 99456
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 9: {2,2} 88: {1,1,1,5} 100: {1,1,3,3} 125: {3,3,3} 624: {1,1,1,1,2,6} 756: {1,1,2,2,2,4} 792: {1,1,1,2,2,5} 810: {1,2,2,2,2,3} 880: {1,1,1,1,3,5} 900: {1,1,2,2,3,3} 1312: {1,1,1,1,1,13} 2401: {4,4,4,4} 4617: {2,2,2,2,2,8} 4624: {1,1,1,1,7,7} 6240: {1,1,1,1,1,2,3,6} 7392: {1,1,1,1,1,2,4,5} 7560: {1,1,1,2,2,2,3,4} 7920: {1,1,1,1,2,2,3,5} Example: 810 has prime indices {1,2,2,2,2,3} and prime exponents (1,4,1), both of which have mean 2, so 810 is in the sequence. Example: 78720 has prime indices {1,1,1,1,1,1,1,2,3,13} and prime exponents (7,1,1,1), both of which have mean 5/2, so 78720 is in the sequence.
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]]; Select[Range[1000],Mean[prix[#]]==Mean[prisig[#]]&]
Comments