This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359909 #13 Jan 20 2025 09:07:46 %S A359909 0,1,1,2,1,2,1,3,2,2,1,3,1,2,2,4,1,3,1,3,2,2,1,5,2,2,3,3,1,4,1,4,2,2, %T A359909 2,6,1,2,2,4,1,4,1,3,3,2,1,6,2,3,2,3,1,4,2,4,2,2,1,7,1,2,3,7,2,4,1,3, %U A359909 2,4,1,7,1,2,3,3,2,4,1,6,4,2,1,6,2,2,2,4,1,6,2,3,2,2,2,6,1,3,3,6,1,4,1,4,5,2,1,6,1,4,2,5,1,4,2,3,3,2,2,11 %N A359909 Number of integer factorizations of n into factors > 1 with the same mean as median. %C A359909 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %H A359909 Antti Karttunen, <a href="/A359909/b359909.txt">Table of n, a(n) for n = 1..65537</a> %e A359909 The a(n) factorizations for n = 24, 36, 60, 120, 144, 360: %e A359909 24 36 60 120 144 360 %e A359909 3*8 4*9 2*30 2*60 2*72 4*90 %e A359909 4*6 6*6 3*20 3*40 3*48 5*72 %e A359909 2*12 2*18 4*15 4*30 4*36 6*60 %e A359909 2*3*4 3*12 5*12 5*24 6*24 8*45 %e A359909 2*2*3*3 6*10 6*20 8*18 9*40 %e A359909 3*4*5 8*15 9*16 10*36 %e A359909 10*12 12*12 12*30 %e A359909 4*5*6 2*2*6*6 15*24 %e A359909 2*6*10 3*3*4*4 18*20 %e A359909 2*3*4*5 2*180 %e A359909 3*120 %e A359909 2*10*18 %e A359909 3*4*5*6 %t A359909 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A359909 Table[Length[Select[facs[n],Mean[#]==Median[#]&]],{n,100}] %o A359909 (PARI) %o A359909 median(lista) = if((#lista)%2, lista[(1+#lista)/2], (lista[#lista/2]+lista[1+(#lista/2)])/2); %o A359909 A359909(n, m=n, facs=List([])) = if(1==n, (#facs>0 && (median(facs)==(vecsum(Vec(facs))/#facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A359909(n/d, d, newfacs))); (s)); \\ _Antti Karttunen_, Jan 20 2025 %Y A359909 The version for partitions is A240219, complement A359894. %Y A359909 These multisets are ranked by A359889. %Y A359909 The version for strict partitions is A359897. %Y A359909 The odd-length case is A359910. %Y A359909 The complement is counted by A359911. %Y A359909 A001055 counts factorizations. %Y A359909 A058398 counts partitions by mean, see also A008284, A327482. %Y A359909 A326622 counts factorizations with integer mean, strict A328966. %Y A359909 A359893 and A359901 count partitions by median, odd-length A359902. %Y A359909 Cf. A316313, A326567/A326568, A359906, A360005. %K A359909 nonn %O A359909 1,4 %A A359909 _Gus Wiseman_, Jan 24 2023 %E A359909 More terms from _Antti Karttunen_, Jan 20 2025