This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359910 #13 Jan 20 2025 13:09:35 %S A359910 0,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,2,1,1, %T A359910 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1, %U A359910 1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3 %N A359910 Number of odd-length integer factorizations of n into factors > 1 with the same mean as median. %C A359910 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %H A359910 Antti Karttunen, <a href="/A359910/b359910.txt">Table of n, a(n) for n = 1..65537</a> %e A359910 The a(n) factorizations for n = 120, 960, 5760, 6720: %e A359910 120 960 5760 6720 %e A359910 4*5*6 2*16*30 16*18*20 4*30*56 %e A359910 2*6*10 4*12*20 3*5*6*8*8 10*21*32 %e A359910 8*10*12 4*4*6*6*10 12*20*28 %e A359910 3*4*4*4*5 2*2*8*10*18 4*5*6*7*8 %e A359910 2*2*2*4*4*5*9 2*4*7*10*12 %e A359910 2*2*2*4*5*6*7 %t A359910 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A359910 Table[Length[Select[facs[n],OddQ[Length[#]]&&Mean[#]==Median[#]&]],{n,100}] %o A359910 (PARI) A359910(n, m=n, facs=List([])) = if(1==n, (((#facs)%2) && (facs[(1+#facs)/2]==(vecsum(Vec(facs))/#facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A359910(n/d, d, newfacs))); (s)); \\ _Antti Karttunen_, Jan 20 2025 %Y A359910 The version for partitions is A359895, ranked by A359891. %Y A359910 This is the odd-length case of A359909, partitions A240219. %Y A359910 A001055 counts factorizations. %Y A359910 A326622 counts factorizations with integer mean, strict A328966. %Y A359910 Cf. A316313, A326567/A326568, A359889, A359894, A359897, A359902, A359906, A359911, A360005. %K A359910 nonn %O A359910 1,8 %A A359910 _Gus Wiseman_, Jan 24 2023 %E A359910 More terms from _Antti Karttunen_, Jan 20 2025