This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359913 #5 Jan 26 2023 10:04:19 %S A359913 2,3,4,5,7,8,9,11,12,13,15,16,17,18,19,20,21,23,24,25,27,28,29,30,31, %T A359913 32,33,35,37,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,59, %U A359913 61,63,64,65,66,67,68,69,70,71,72,73,75,76,77,78,79,80,81 %N A359913 Numbers whose multiset of prime factors has integer median. %C A359913 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A359913 The terms together with their prime factors begin: %e A359913 2: {2} %e A359913 3: {3} %e A359913 4: {2,2} %e A359913 5: {5} %e A359913 7: {7} %e A359913 8: {2,2,2} %e A359913 9: {3,3} %e A359913 11: {11} %e A359913 12: {2,2,3} %e A359913 13: {13} %e A359913 15: {3,5} %e A359913 16: {2,2,2,2} %e A359913 17: {17} %e A359913 18: {2,3,3} %e A359913 19: {19} %e A359913 20: {2,2,5} %e A359913 21: {3,7} %e A359913 23: {23} %e A359913 24: {2,2,2,3} %t A359913 Select[Range[2,100],IntegerQ[Median[Flatten[ConstantArray@@@FactorInteger[#]]]]&] %Y A359913 Prime factors are listed by A027746. %Y A359913 The complement is A072978, for prime indices A359912. %Y A359913 For mean instead of median we have A078175, for prime indices A316413. %Y A359913 For prime indices instead of factors we have A359908, counted by A325347. %Y A359913 Positions of even terms in A360005. %Y A359913 A067340 lists numbers whose prime signature has integer mean. %Y A359913 A112798 lists prime indices, length A001222, sum A056239. %Y A359913 A325347 counts partitions with integer median, strict A359907. %Y A359913 A326567/A326568 gives the mean of prime indices, conjugate A326839/A326840. %Y A359913 A359893 and A359901 count partitions by median, odd-length A359902. %Y A359913 Cf. A067538, A175352, A348551, A359890, A359905, A360007, A360006, A360069. %K A359913 nonn %O A359913 1,1 %A A359913 _Gus Wiseman_, Jan 25 2023