This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359922 #7 Jan 21 2023 18:44:05 %S A359922 1,1,4,9,42,187,775,3470,16085,76521,368274,1791494,8829531,43964379, %T A359922 220667042,1115235384,5671532510,29004157940,149056379047, %U A359922 769368598912,3986831368824,20733495321171,108175116519808,566067951728994,2970221822319878,15624080964153005 %N A359922 a(n) = coefficient of x^n in A(x) where x = Sum_{n=-oo..+oo} (-1)^(n-1) * x^n * (2 + x^n*A(x)^n)^n. %H A359922 Paul D. Hanna, <a href="/A359922/b359922.txt">Table of n, a(n) for n = 0..200</a> %F A359922 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies: %F A359922 (1) x = Sum_{n=-oo..+oo} (-1)^(n-1) * x^n * (2 + x^n*A(x)^n)^n. %F A359922 (2) x = Sum_{n=-oo..+oo} (-1)^(n-1) * x^(n*(n-1)) * A(x)^(n^2) / (1 + 2*x^n*A(x)^n)^n. %e A359922 G.f.: A(x) = 1 + x + 4*x^2 + 9*x^3 + 42*x^4 + 187*x^5 + 775*x^6 + 3470*x^7 + 16085*x^8 + 76521*x^9 + 368274*x^10 + ... %e A359922 where %e A359922 x = ... + x^6*A(x)^9/(1 + 2*x^3*A(x)^3)^3 - x^2*A(x)^4/(1 + 2*x^2*A(x)^2)^2 + A(x)/(1 + 2*x*A(x)) - 1 + x*(2 + x*A(x)) - x^2*(2 + x^2*A(x)^2)^2 + x^3*(2 + x^3*A(x)^3)^3 + ... + (-1)^(n-1) * x^n * (2 + x^n*A(x)^n)^n + ... %o A359922 (PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); %o A359922 A[#A] = polcoeff(x - sum(m=-#A, #A, (-1)^(m-1) * x^m * (2 + (x*Ser(A))^m)^m ), #A-1)); A[n+1]} %o A359922 for(n=0, 30, print1(a(n), ", ")) %Y A359922 Cf. A359672, A359923. %K A359922 nonn %O A359922 0,3 %A A359922 _Paul D. Hanna_, Jan 18 2023