This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359929 #10 Apr 01 2023 13:29:05 %S A359929 12,18,24,18,36,20,40,12,24,36,48,48,54,45,50,60,18,36,54,72,28,56,40, %T A359929 80,24,48,72,96,98,90,84,75,54,96,108,63,60,90,120,50,100,12,24,36,48, %U A359929 72,96,108,144,126,120,150,147,18,36,54,72,108,144,162,56,112,132,80,160,48,96,144,162,192,98,196 %N A359929 Irregular triangle read by rows, where row n lists k < t such that rad(k) = rad(t) but k does not divide t, where t = A360768(n) and rad(k) = A007947(k). %H A359929 Michael De Vlieger, <a href="/A359929/b359929.txt">Table of n, a(n) for n = 1..14675</a> (rows n = 1..3000, flattened) %H A359929 Michael De Vlieger, <a href="/A359929/a359929.png">Plot (k, t) at (x, -y)</a>, where k = A126706(i) and t = A360768(j) for i = 1..48 and j = 1..108, showing k in dark blue, t in dark red, and for t and nondivisor k such that rad(k) = rad(t), we highlight in large black dots. This sequence counts the number of black dots in row n. %F A359929 Row lengths are in A359382. %e A359929 Table of some of the first rows of the sequence, showing both even and odd b(n) = A360768(n) with both a single and multiple terms in the row: %e A359929 n b(n) row n of this sequence %e A359929 --------------------------------- %e A359929 1 18 12; %e A359929 2 24 18; %e A359929 3 36 24; %e A359929 4 48 18, 36; %e A359929 5 50 20, 40; %e A359929 6 54 12, 24, 36, 48; %e A359929 ... %e A359929 8 75 45; %e A359929 ... %e A359929 18 135 75; %e A359929 ... %e A359929 23 162 12, 24, 36, 48, 72, 96, 108, 144; %e A359929 ... %e A359929 56 375 45, 135, 225; %e A359929 57 378 84, 168, 252, 294, 336; %e A359929 58 384 18, 36, 54, 72, 108, 144, 162, 216, 288, 324 %t A359929 rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; %t A359929 s = Select[Range[2^7], Nor[SquareFreeQ[#], PrimePowerQ[#]] &]; %t A359929 t = Select[s, #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ %t A359929 {#, FactorInteger[#][[All, 1]]} &]; %t A359929 Flatten@ Map[Function[{n, k}, %t A359929 Select[TakeWhile[s, # < n &], %t A359929 And[rad[#] == k, ! Divisible[n, #]] &]] @@ {#, rad[#]} &, t] %Y A359929 Cf. A007947, A126706, A355432, A359382, A360768. %K A359929 nonn,tabf %O A359929 1,1 %A A359929 _Michael De Vlieger_, Mar 29 2023