This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359948 #20 Jul 08 2023 10:42:28 %S A359948 2,2,3,5,3,13,5,7,41,13,83,109,347,337,127,67,379,499,739,4243,2311, %T A359948 1973,5827,7333,971,3449,3967,3407,12671,1423,859,20641,7237,769,9209, %U A359948 281,12919,16633,11383,30449,6733,40627,34591,1103,14303,5479,4603,17477,5113,51001,36299,57037,1153,34297,1237 %N A359948 Lexicographically earliest sequence of primes whose partial products lie between noncomposite numbers. %C A359948 Are there any repeated terms other than a(1) = a(2) = 2, a(3) = a(5) = 3, a(4) = a(7) = 5 and a(6) = a(10) = 13? %H A359948 Michael S. Branicky, <a href="/A359948/b359948.txt">Table of n, a(n) for n = 1..160</a> %e A359948 2 - 1 = 1 and 2 + 1 = 3 are both noncomposites. %e A359948 2*2 - 1 = 3 and 2*2 + 1 = 5 are both primes. %e A359948 2*2*3 - 1 = 11 and 2*2*3 + 1 = 13 are both primes. %e A359948 2*2*3*5 - 1 = 59 and 2*2*3*5 + 1 = 61 are both primes. %p A359948 R:= 2: s:= 2: %p A359948 for i from 2 to 60 do %p A359948 p:= 1: %p A359948 do %p A359948 p:= nextprime(p); %p A359948 if isprime(p*s-1) and isprime(p*s+1) then R:= R,p; s:= p*s; break fi; %p A359948 od od: %p A359948 R; %t A359948 a[1] = 2; a[n_] := a[n] = Module[{r = Product[a[k], {k, 1, n - 1}], p = 2}, While[! PrimeQ[r*p - 1] || ! PrimeQ[r*p + 1], p = NextPrime[p]]; p]; Array[a, 55] (* _Amiram Eldar_, Jan 19 2023 *) %o A359948 (Python) %o A359948 from itertools import islice %o A359948 from sympy import isprime, nextprime %o A359948 def agen(): # generator of terms %o A359948 s = 2; yield 2 %o A359948 while True: %o A359948 p = 2 %o A359948 while True: %o A359948 if isprime(s*p-1) and isprime(s*p+1): %o A359948 yield p; s *= p; break %o A359948 p = nextprime(p) %o A359948 print(list(islice(agen(), 55))) # _Michael S. Branicky_, Jan 19 2023 %Y A359948 Cf. A036014, A359940. %K A359948 nonn %O A359948 1,1 %A A359948 _Robert Israel_, Jan 19 2023