cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359961 Smallest Zuckerman number (A007602) with exactly n distinct prime factors.

This page as a plain text file.
%I A359961 #21 Feb 16 2025 08:34:04
%S A359961 1,2,6,132,3276,27132,1117116,111914712,6111417312,1113117121116,
%T A359961 1112712811322112,11171121131111172
%N A359961 Smallest Zuckerman number (A007602) with exactly n distinct prime factors.
%H A359961 Giovanni Resta, <a href="http://www.numbersaplenty.com/set/Zuckerman_number/">Zuckerman numbers</a>, Numbers Aplenty.
%H A359961 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DistinctPrimeFactors.html">Distinct Prime Factors</a>.
%e A359961 3276 = 2^2*3^2*7*13 is the smallest integer with 4 distinct prime factors that is also Zuckerman number as 3276 / (3*2*7*6) = 13, so a(4) = 3276.
%o A359961 (PARI) a(n) = my(k=1); while (!(p=vecprod(digits(k))) || (k % p) || (omega(k) != n), k++); k; \\ _Michel Marcus_, Jan 21 2023
%Y A359961 Cf. A007602, A288069.
%Y A359961 Similar: A060319 (Fibonacci), A083002 (oblong), A359960 (Niven).
%K A359961 nonn,base,more
%O A359961 0,2
%A A359961 _Bernard Schott_, Jan 21 2023
%E A359961 a(6)-a(7) from _Michel Marcus_, Jan 21 2023
%E A359961 a(8)-a(9) from _Daniel Suteu_, Jan 21 2023
%E A359961 a(10)-a(11) from _Bert Dobbelaere_, Jan 29 2023