cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359963 Arithmetic numbers (A003601) having more divisors than all smaller arithmetic numbers.

This page as a plain text file.
%I A359963 #13 Jan 23 2023 02:33:13
%S A359963 1,3,6,20,30,60,168,420,840,1980,2160,2520,7560,10080,15120,27720,
%T A359963 79200,83160,110880,166320,262080,332640,554400,786240,831600,1081080,
%U A359963 1441440,2162160,2882880,4324320,7207200,8648640,10810800,17297280,21621600,36756720,43243200
%N A359963 Arithmetic numbers (A003601) having more divisors than all smaller arithmetic numbers.
%C A359963 The corresponding numbers of divisors are 1, 2, 4, 6, 8, 12, 16, 24, 32, ... .
%C A359963 This sequence is infinite since there are arithmetic numbers with any number of divisors (see A359965).
%H A359963 Amiram Eldar, <a href="/A359963/b359963.txt">Table of n, a(n) for n = 1..55</a>
%t A359963 seq[nmax_] := Module[{s = {}, dm = 0, d}, Do[d = DivisorSigma[0, n]; If[d > dm && Divisible[DivisorSigma[1, n], d], dm = d; AppendTo[s, n]], {n, 1, nmax}]; s]; seq[10^6]
%o A359963 (PARI) lista(nmax) = {my(dm = 0, d); for(n = 1, nmax, d = numdiv(n); if(d > dm && sigma(n)%d == 0, dm = d; print1(n, ", "))); }
%Y A359963 Subsequence of A003601.
%Y A359963 Cf. A000005, A359965.
%Y A359963 Similar sequences: A002182, A335317, A359964.
%K A359963 nonn
%O A359963 1,2
%A A359963 _Amiram Eldar_, Jan 20 2023