This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359964 #12 Jan 23 2023 02:33:10 %S A359964 1,2,8,12,24,36,60,180,240,360,720,1260,1680,3360,5040,10080,15120, %T A359964 20160,25200,30240,55440,100800,110880,221760,277200,443520,665280, %U A359964 720720,1108800,1441440,2494800,2882880,3603600,5765760,8648640,12972960,14414400,25945920,28828800 %N A359964 Refactorable numbers (A033950) having more divisors than all smaller refactorable numbers. %C A359964 The corresponding numbers of divisors are 1, 2, 4, 6, 8, 9, 12, 18, 20, 24, ... . %C A359964 This sequence if infinite since there are refactorable numbers with arbitrarily large number of divisors. E.g., for any prime p, p^(p-1) is a refactorable number with p divisors. %H A359964 Amiram Eldar, <a href="/A359964/b359964.txt">Table of n, a(n) for n = 1..60</a> %t A359964 seq[nmax_] := Module[{s = {}, dm = 0, d}, Do[d = DivisorSigma[0, n]; If[d > dm && Divisible[n, d], dm = d; AppendTo[s, n]], {n, 1, nmax}]; s]; seq[10^6] %o A359964 (PARI) lista(nmax) = {my(dm = 0, d); for(n = 1, nmax, d = numdiv(n); if(d > dm && n%d == 0, dm = d; print1(n, ", "))); } %Y A359964 Subsequence of A033950. %Y A359964 Cf. A000005, A073904, A110821. %Y A359964 Similar sequences: A002182, A335317, A356078, A359963. %K A359964 nonn %O A359964 1,2 %A A359964 _Amiram Eldar_, Jan 20 2023