This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359977 #14 Jan 30 2023 10:34:01 %S A359977 1,5,20,8,2,50,57,3,169,274,31,5,303,646,41,2,1,889,2011,179,21,2, %T A359977 1685,4025,388,33,4,3466,8283,925,67,7,5624,13442,1498,106,9,1,11896, %U A359977 27907,3718,354,30,2,16976,40100,5182,461,33,1,32506,73806,11249,1118,61,6,46187,104453,16380,1747,123,1,1 %N A359977 Irregular table read by rows: T(n,k) is the number of k-gons, k>=3, formed inside a right triangle by the straight line segments mutually connecting all vertices and points on the two shorter edges whose positions on one edge equal the Farey series of order n while on the other they divide its length into n equal segments. %C A359977 The number of vertices on the edge with point positions equaling the Farey series of order n is A005728(n). No formula for a(n) is known. %C A359977 See A359974 and A359975 for images of the triangle. %C A359977 This graph is related to the 'Farey fan' given in the reference. %D A359977 McIlroy, M. D. "A Note on Discrete Representation of Lines". AT&T Technical Journal, 64 (1985), 481-490. %F A359977 Sum of row n = A359975(n). %e A359977 The table begins: %e A359977 1; %e A359977 5; %e A359977 20, 8, 2; %e A359977 50, 57, 3; %e A359977 169, 274, 31, 5; %e A359977 303, 646, 41, 2, 1; %e A359977 889, 2011, 179, 21, 2; %e A359977 1685, 4025, 388, 33, 4; %e A359977 3466, 8283, 925, 67, 7; %e A359977 5624, 13442, 1498, 106, 9, 1; %e A359977 11896, 27907, 3718, 354, 30, 2; %e A359977 16976, 40100, 5182, 461, 33, 1; %e A359977 32506, 73806, 11249, 1118, 61, 6; %e A359977 46187, 104453, 16380, 1747, 123, 1, 1; %e A359977 67117, 152534, 24159, 2511, 181, 10, 1; %e A359977 95276, 213798, 34962, 3824, 295, 21; %e A359977 . %e A359977 . %Y A359977 Cf. A359974 (vertices), A359975 (regions), A359976 (edges), A005728, A359971, A359694, A358951, A358889. %K A359977 nonn,tabf %O A359977 1,2 %A A359977 _Scott R. Shannon_ and _N. J. A. Sloane_, Jan 20 2023