cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359980 Expansion of Product_{k>=0} (1 - x^(k^2+2)) in powers of x.

This page as a plain text file.
%I A359980 #19 Jan 21 2023 11:51:46
%S A359980 1,0,-1,-1,0,1,-1,0,1,1,0,-2,0,1,1,0,-1,1,-1,-1,0,1,1,-1,1,0,-1,-2,0,
%T A359980 3,1,-1,-2,1,1,-2,-1,1,2,0,-1,0,0,0,0,1,0,-1,-1,1,1,-3,-1,2,3,-1,-2,2,
%U A359980 1,-1,-2,0,2,0,-1,0,-1,-1,-1,3,3,-2,-1,1,1,-3,-3,3,4,0
%N A359980 Expansion of Product_{k>=0} (1 - x^(k^2+2)) in powers of x.
%H A359980 Seiichi Manyama, <a href="/A359980/b359980.txt">Table of n, a(n) for n = 0..10000</a>
%o A359980 (PARI) my(N=100, x='x+O('x^N)); Vec(prod(k=0, sqrtint(N), 1-x^(k^2+2)))
%o A359980 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, sumdiv(j, d, issquare(d-2)*d)*v[i-j+1])/i); v;
%Y A359980 Cf. A276516, A359936, A359966, A360001, A360002, A360003.
%K A359980 sign,look
%O A359980 0,12
%A A359980 _Seiichi Manyama_, Jan 21 2023