This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359985 #13 Oct 15 2024 15:08:24 %S A359985 1,1,1,1,3,1,1,7,7,1,1,15,35,15,1,1,31,155,155,31,1,1,63,651,1365,651, %T A359985 63,1,1,127,2667,10941,10941,2667,127,1,1,255,10795,82215,156597, %U A359985 82215,10795,255,1,1,511,43435,589135,1988007,1988007,589135,43435,511,1 %N A359985 Triangle read by rows: T(n,k) is the number of quasi series-parallel matroids on [n] with rank k, 0 <= k <= n. %C A359985 A quasi series-parallel matroid is a collection of series-parallel matroids. See the Ferroni/Larson reference for a precise definition. %C A359985 The first six rows of this triangle are the same as A022166. %H A359985 Andrew Howroyd, <a href="/A359985/b359985.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %H A359985 Luis Ferroni and Matt Larson, <a href="https://arxiv.org/abs/2303.02253">Kazhdan-Lusztig polynomials of braid matroids</a>, arXiv:2303.02253 [math.CO], 2023. %H A359985 Nicholas Proudfoot, Yuan Xu, and Ben Young, <a href="https://arxiv.org/abs/2406.04502">On the enumeration of series-parallel matroids</a>, arXiv:2406.04502 [math.CO], 2024. %e A359985 Triangle begins: %e A359985 1; %e A359985 1, 1; %e A359985 1, 3, 1; %e A359985 1, 7, 7, 1; %e A359985 1, 15, 35, 15, 1; %e A359985 1, 31, 155, 155, 31, 1; %e A359985 1, 63, 651, 1365, 651, 63, 1; %e A359985 1, 127, 2667, 10941, 10941, 2667, 127, 1; %e A359985 ... %o A359985 (PARI) \\ Proposition 2.3, 2.8 in Ferroni/Larson, compare A140945. %o A359985 T(n) = {[Vecrev(p) | p<-Vec(serlaplace(exp(x*(y+1) + y*intformal( serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))))]} %o A359985 { my(A=T(8)); for(i=1, #A, print(A[i])) } %Y A359985 Row sums are A359986. %Y A359985 Columns k=0..2 are A000012, A000225, A006095. %Y A359985 Cf. A022166, A140945. %K A359985 nonn,tabl %O A359985 0,5 %A A359985 _Andrew Howroyd_, Mar 08 2023