cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359990 Array read by antidiagonals: T(m,n) is the number of edge cuts in the grid graph P_m X P_n.

This page as a plain text file.
%I A359990 #8 Feb 16 2025 08:34:04
%S A359990 0,1,1,3,11,3,7,105,105,7,15,919,3665,919,15,31,7713,123215,123215,
%T A359990 7713,31,63,63351,4051679,16222021,4051679,63351,63,127,514321,
%U A359990 131630449,2108725953,2108725953,131630449,514321,127,255,4148839,4248037953,272179739279,1089224690733,272179739279,4248037953,4148839,255
%N A359990 Array read by antidiagonals: T(m,n) is the number of edge cuts in the grid graph P_m X P_n.
%C A359990 The complement of an edge cut is a disconnected spanning subgraph (spanning meaning that the graph has the same vertex set although some vertices may be of degree zero).
%H A359990 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EdgeCut.html">Edge Cut</a>
%H A359990 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>
%F A359990 T(m,n) = 2^B(m,n) - A359993(m,n) where B(m,n) = 2*m*n - m - n  = A141387(n+m-2, n-1) is the number of edges in the graph.
%F A359990 T(m,n) = T(n,m).
%e A359990 Table starts:
%e A359990 ========================================================
%e A359990 m\n|  1     2         3            4               5
%e A359990 ---+----------------------------------------------------
%e A359990 1  |  0     1         3            7              15 ...
%e A359990 2  |  1    11       105          919            7713 ...
%e A359990 3  |  3   105      3665       123215         4051679 ...
%e A359990 4  |  7   919    123215     16222021      2108725953 ...
%e A359990 5  | 15  7713   4051679   2108725953   1089224690733 ...
%e A359990 6  | 31 63351 131630449 272179739279 560238057496423 ...
%e A359990    ...
%Y A359990 Rows 1..3 are A000225(n-1), A359987, A359988.
%Y A359990 Main diagonal is A359989.
%Y A359990 Cf. A141387, A359993 (connected spanning subgraphs).
%K A359990 nonn,tabl
%O A359990 1,4
%A A359990 _Andrew Howroyd_, Jan 28 2023