cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359993 Array read by antidiagonals: T(m,n) is the number of connected spanning subgraphs in the grid graph P_m X P_n.

This page as a plain text file.
%I A359993 #13 Feb 16 2025 08:34:04
%S A359993 1,1,1,1,5,1,1,23,23,1,1,105,431,105,1,1,479,7857,7857,479,1,1,2185,
%T A359993 142625,555195,142625,2185,1,1,9967,2587279,38757695,38757695,2587279,
%U A359993 9967,1,1,45465,46929343,2698167665,10286937043,2698167665,46929343,45465,1
%N A359993 Array read by antidiagonals: T(m,n) is the number of connected spanning subgraphs in the grid graph P_m X P_n.
%C A359993 Also T(m,n) except when m = n = 0 is the number of connected edge covers in the m X n grid graph.
%H A359993 Andrew Howroyd, <a href="/A359993/b359993.txt">Table of n, a(n) for n = 1..465</a>
%H A359993 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>
%F A359993 T(m,n) = T(n,m).
%e A359993 Table starts:
%e A359993 =================================================================
%e A359993 m\n| 1    2       3          4             5                6
%e A359993 ---+-------------------------------------------------------------
%e A359993 1  | 1    1       1          1             1                1 ...
%e A359993 2  | 1    5      23        105           479             2185 ...
%e A359993 3  | 1   23     431       7857        142625          2587279 ...
%e A359993 4  | 1  105    7857     555195      38757695       2698167665 ...
%e A359993 5  | 1  479  142625   38757695   10286937043    2711895924889 ...
%e A359993 6  | 1 2185 2587279 2698167665 2711895924889 2692324030864335 ...
%e A359993    ...
%Y A359993 Rows 1..4 are A000012, A107839(n-1), A158453, A359991.
%Y A359993 Main diagonal is A359992.
%Y A359993 Cf. A116469 (spanning trees), A287151 (connected induced subgraphs), A286912 (edge covers), A359990 (edge cuts), A360194 (spanning forests).
%K A359993 nonn,tabl
%O A359993 1,5
%A A359993 _Andrew Howroyd_, Jan 28 2023