This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359997 #19 May 30 2023 19:43:53 %S A359997 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,2,2,1,1,2,2,2,1,1,1,1,2,2,4, %T A359997 3,5,4,7,6,6,6,4,4,2,2,1,1,1,1,2,2,4,5,5,6,8,10,15,20,20,24,23,19,18, %U A359997 20,30,30,36,36,16,0,28,28,28 %N A359997 Irregular triangle read by rows: T(n,k) is the number of directed cycles of length k in the 2-Fibonacci digraph of order n. %C A359997 See Dalfó and Fiol (2019) or A360000 for the definition of the 2-Fibonacci digraph. %C A359997 Equivalently, T(n,k) is the number of cycles of length k with no adjacent 1's that can be produced by a general n-stage feedback shift register. %C A359997 Apparently, the number of terms in the n-th row (i.e., the length of the longest cycle in the 2-Fibonacci digraph of order n) is A080023(n). %C A359997 Interestingly, the 2-Fibonacci digraph of order 7 has cycles of all lengths from 1 up to the maximum 29, except 26. For all other orders n <= 10, there are no such gaps, i.e., the graph is weakly pancyclic. %H A359997 Pontus von Brömssen, <a href="/A359997/b359997.txt">Table of n, a(n) for n = 1..320</a> (rows n = 1..10; row 10 computed by Bert Dobbelaere) %H A359997 C. Dalfó and M. A. Fiol, <a href="https://arxiv.org/abs/1909.06766">On d-Fibonacci digraphs</a>, arXiv:1909.06766 [math.CO], 2019. %F A359997 T(n,k) = A006206(k) for n >= k-1. %e A359997 Triangle begins: %e A359997 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 %e A359997 ---+----------------------------------------------------- %e A359997 1 | 1 1 %e A359997 2 | 1 1 1 %e A359997 3 | 1 1 1 1 %e A359997 4 | 1 1 1 1 2 1 1 %e A359997 5 | 1 1 1 1 2 2 1 1 2 2 2 %e A359997 6 | 1 1 1 1 2 2 4 3 5 4 7 6 6 6 4 4 2 2 %o A359997 (Python) %o A359997 import networkx as nx %o A359997 from collections import Counter %o A359997 def F(n): return nx.DiGraph(((0,0),(0,1),(1,0))) if n == 1 else nx.line_graph(F(n-1)) %o A359997 def A359997_row(n): %o A359997 a = Counter(len(c) for c in nx.simple_cycles(F(n))) %o A359997 return [a[k] for k in range(1,max(a)+1)] %Y A359997 Cf. A006206 (main diagonal), A080023, A344018, A359998 (last element in each row), A359999, A360000 (row sums). %K A359997 nonn,tabf %O A359997 1,14 %A A359997 _Pontus von Brömssen_, Jan 21 2023