cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360007 Positions of first appearances in the sequence giving the median of the prime indices of n (A360005(n)/2).

This page as a plain text file.
%I A360007 #5 Jan 24 2023 12:35:41
%S A360007 1,2,3,5,6,7,11,13,14,17,19,23,26,29,31,37,38,41,43,47,53,58,59,61,67,
%T A360007 71,73,74,79,83,86,89,97,101,103,106,107,109,113,122,127,131,137,139,
%U A360007 142,149,151,157,158,163,167,173,178,179,181,191,193,197,199,202
%N A360007 Positions of first appearances in the sequence giving the median of the prime indices of n (A360005(n)/2).
%C A360007 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A360007 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%F A360007 Consists of 1, the primes, and all odd-indexed primes times 2.
%t A360007 nn=1000;
%t A360007 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A360007 seq=Table[If[n==1,1,2*Median[prix[n]]],{n,nn}];
%t A360007 Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&]
%Y A360007 Positions of first appearances in A360005.
%Y A360007 The unsorted version is A360006.
%Y A360007 For mean instead of median we have A360008.
%Y A360007 A112798 lists prime indices, length A001222, sum A056239.
%Y A360007 A316413 lists numbers whose prime indices have integer mean.
%Y A360007 A325347 = partitions w/ integer median, strict A359907, complement A307683.
%Y A360007 A326567/A326568 gives mean of prime indices.
%Y A360007 A359893 counts partitions by median, cf. A359901, A359902.
%Y A360007 A359908 = numbers w/ integer median of prime indices, complement A359912.
%Y A360007 Cf. A026424, A359889, A359890, A360009.
%K A360007 nonn
%O A360007 1,2
%A A360007 _Gus Wiseman_, Jan 24 2023