cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360009 Numbers whose prime indices have integer mean and integer median.

This page as a plain text file.
%I A360009 #6 Jan 24 2023 12:35:30
%S A360009 2,3,4,5,7,8,9,10,11,13,16,17,19,21,22,23,25,27,28,29,30,31,32,34,37,
%T A360009 39,41,43,46,47,49,53,55,57,59,61,62,64,67,68,71,73,78,79,81,82,83,85,
%U A360009 87,88,89,90,91,94,97,98,99,100,101,103,105,107,109,110,111
%N A360009 Numbers whose prime indices have integer mean and integer median.
%C A360009 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A360009 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%F A360009 Intersection of A316413 and A359908.
%e A360009 The terms together with their prime indices begin:
%e A360009     2: {1}
%e A360009     3: {2}
%e A360009     4: {1,1}
%e A360009     5: {3}
%e A360009     7: {4}
%e A360009     8: {1,1,1}
%e A360009     9: {2,2}
%e A360009    10: {1,3}
%e A360009    11: {5}
%e A360009    13: {6}
%e A360009    16: {1,1,1,1}
%e A360009    17: {7}
%e A360009    19: {8}
%e A360009    21: {2,4}
%e A360009    22: {1,5}
%e A360009    23: {9}
%e A360009    25: {3,3}
%e A360009    27: {2,2,2}
%e A360009    28: {1,1,4}
%t A360009 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A360009 Select[Range[100],IntegerQ[Mean[prix[#]]]&&IntegerQ[Median[prix[#]]]&]
%Y A360009 For just integer mean we have A316413 (counted by A067538).
%Y A360009 The mean of prime indices is given by A326567/A326568.
%Y A360009 The complement is A348551 \/ A359912 (counted by A349156 and A307683).
%Y A360009 These partitions are counted by A359906.
%Y A360009 For just integer median we have A359908 (counted by A325347).
%Y A360009 The median of prime indices is given by A360005/2.
%Y A360009 A058398 counts partitions by mean, see also A008284, A327482.
%Y A360009 A112798 lists prime indices, length A001222, sum A056239.
%Y A360009 A326622 counts factorizations with integer mean, strict A328966.
%Y A360009 A359893 and A359901 count partitions by median, odd-length A359902.
%Y A360009 Cf. A026424, A327473, A359889, A359890, A359903, A359905, A360006.
%K A360009 nonn
%O A360009 1,1
%A A360009 _Gus Wiseman_, Jan 24 2023