This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360012 #8 Jan 22 2023 16:02:36 %S A360012 0,0,0,1,0,0,0,2,1,0,0,2,0,0,0,4,0,2,0,2,0,0,0,4,1,0,2,2,0,0,0,6,0,0, %T A360012 0,8,0,0,0,4,0,0,0,2,2,0,0,8,1,2,0,2,0,4,0,4,0,0,0,4,0,0,2,9,0,0,0,2, %U A360012 0,0,0,14,0,0,2,2,0,0,0,8,4,0,0,4,0,0,0 %N A360012 a(n) is the number of triples (u,v,w) of divisors of n with u/v = v/w, and u < v < w. %C A360012 In other words, a(n) is the number of triples of distinct divisors of n in geometric progression. %C A360012 This sequence is unbounded. %H A360012 <a href="/index/Di#divisors">Index entries for sequences related to divisors</a> %F A360012 a(n) <= a(n*k) for any n, k > 0. %F A360012 a(p^k) = A002620(k) for any k >= 0 and any prime number p. %F A360012 a(s^2) = A005059(k) for any squarefree number s with k prime factors. %e A360012 The first terms, alongside the corresponding triples, are: %e A360012 n a(n) (u,v,w)'s %e A360012 -- ---- ------------------------------------ %e A360012 1 0 None %e A360012 2 0 None %e A360012 3 0 None %e A360012 4 1 (1,2,4) %e A360012 5 0 None %e A360012 6 0 None %e A360012 7 0 None %e A360012 8 2 (1,2,4), (2,4,8) %e A360012 9 1 (1,3,9) %e A360012 10 0 None %e A360012 11 0 None %e A360012 12 2 (1,2,4), (3,6,12) %e A360012 13 0 None %e A360012 14 0 None %e A360012 15 0 None %e A360012 16 4 (1,2,4), (1,4,16), (2,4,8), (4,8,16) %t A360012 Array[Count[Subsets[#, {3}], _?(#2 / #1 == #3 / #2 & @@ # &)] &@ Divisors@ # &, 87] %o A360012 (PARI) a(n) = { my (d=divisors(n), v=0); for (i=1, #d-2, for (j=i+1, #d-1, for (k=j+1, #d, if (d[i]*d[k]==d[j]^2, v++)))); return (v) } %Y A360012 Cf. A002620, A005059, A091009, A132345. %K A360012 nonn %O A360012 1,8 %A A360012 _Rémy Sigrist_, Jan 21 2023