cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360030 a(n) is the minimum number of equal resistors needed in an electrical network so that n nodes can be selected in this network such that there are n*(n-1)/2 distinct resistances 0 < R < oo between the selected nodes.

This page as a plain text file.
%I A360030 #23 Aug 21 2025 22:18:18
%S A360030 1,3,5,8,10,11,12,14,15,16,18,19,21
%N A360030 a(n) is the minimum number of equal resistors needed in an electrical network so that n nodes can be selected in this network such that there are n*(n-1)/2 distinct resistances 0 < R < oo between the selected nodes.
%H A360030 IBM Research, <a href="https://research.ibm.com/haifa/ponderthis/challenges/March2025.html">Electric networks in graphs</a>, Ponder This Challenge, March 2025, asked for the only network corresponding to a(10)=15 and 4 networks for a(12)=18.
%H A360030 Hugo Pfoertner, <a href="/A360030/a360030.pdf">Illustrated examples for the terms a(6), a(7), a(8)</a>, 17 Feb 2023.
%H A360030 Hugo Pfoertner, <a href="/A360030/a360030_1.pdf">Illustrated examples for the terms a(9), a(10), a(11)</a>, 3 Apr 2023.
%H A360030 Hugo Pfoertner, <a href="/A360030/a360030_2.pdf">Illustration of a(12)=18</a>, 8 Jan 2024, showing 3 planar and 5 non-planar networks, 4 of which were required to solve the bonus question of IBM's Ponder This Challenge.
%H A360030 Hugo Pfoertner and Klaus Nagel, <a href="/A360030/a360030_3.pdf">Illustration of a(14)=21</a>, 21 Aug 2025.
%e A360030 a(2) = 1, [[1,2]]
%e A360030 .
%e A360030   1           2
%e A360030   O----R1R----O
%e A360030   R_12 = 1
%e A360030 .
%e A360030 a(3) = 3, [[1,2]^2,[2,3]]
%e A360030 .
%e A360030   1   .---R1R---.   2           3
%e A360030   O --|         |-- O ---R3R--- O
%e A360030       .---R2R---.
%e A360030 .
%e A360030   R_12 = 1/2, R_13 = 3/2,
%e A360030               R_23 = 1
%e A360030 .
%e A360030 a(4) = 5, node 5 hidden, [[1,2],[2,3]^2,[3,5],[4,5]]
%e A360030 .
%e A360030   1           2   .---R2R---.   3          (5)          4
%e A360030   O ---R1R--- O --|         |-- O ---R4R--- O ---R5R--- O
%e A360030                   .---R3R---.
%e A360030 .
%e A360030   R_12 = 1, R_13 = 3/2, R_14 = 7/2,
%e A360030             R_23 = 1/2, R_24 = 5/2,
%e A360030                         R_34 = 2
%e A360030 .
%e A360030 a(5) = 8, node 6 hidden,
%e A360030   [[1, 2], [1, 3]^2, [2, 3], [2, 4], [3, 6], [4, 5], [4, 6]]
%e A360030 .
%e A360030     1             2           4           5
%e A360030     O-----R1R-----O----R5R----O----R8R----O
%e A360030     |             |           |
%e A360030     |            R4R         R7R
%e A360030     .---R2R---.   |           |
%e A360030     |         |---O----R6R----O
%e A360030     .---R3R---.   3          (6)
%e A360030 .
%e A360030    R_12 = 5/9, R_13 = 7/18, R_14 = 19/18, R_15 = 37/18,
%e A360030                R_23 = 1/2,  R_24 = 13/18, R_25 = 31/18,
%e A360030                             R_34 =  8/9,  R_35 = 17/9,
%e A360030                                           R_45 =  1
%Y A360030 Cf. A219158, A342557, A342558, A348020.
%K A360030 nonn,hard,more,changed
%O A360030 2,2
%A A360030 _Hugo Pfoertner_ and _Rainer Rosenthal_, Feb 12 2023
%E A360030 a(14) from _Klaus Nagel_ and _Hugo Pfoertner_, Aug 21 2025