cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A360064 Number of 3-dimensional tilings of a 2 X 2 X n box using 1 X 1 X 1 cubes and trominos (L-shaped connection of 3 cubes).

Original entry on oeis.org

1, 5, 89, 1177, 16873, 237977, 3366793, 47599097, 673035625, 9516252633, 134553882441, 1902506043833, 26900227288361, 380352114739609, 5377937177440009, 76040613721296249, 1075165950495479017, 15202163218500810073, 214948926180739194569
Offset: 0

Views

Author

Gerhard Kirchner, Jan 30 2023

Keywords

Comments

Recurrence 1 is derived in A359884, "3d-tilings of a 2 X 2 X n box" as a special case of a more general tiling problem: III, example 8.

Examples

			4 rotations:
   ___ ___     ___ ___
  |   |   |   |   |   | (cross sections)
  |   |___|   |___|___|
  |       |   |   |   |
  |_______|   |___|___| a(1) = 4 + 1 = 5.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13, 20, -64, 112, 224, -128}, {1, 5, 89, 1177, 16873, 237977}, 25] (* Paolo Xausa, Oct 02 2024 *)

Formula

G.f.: (1 - 8*x + 4*x^2 - 16*x^3) / (1 - 13*x - 20*x^2 + 64*x^3 - 112*x^4 - 224*x^5 + 128*x^6).
Recurrence 1:
a(n) = 5*a(n-1) + 2*b(n-1) + c(n-1) + d(n-1) + e(n-1) + 8*a(n-2) + 4*b(n-2) + c(n-2) + 2*d(n-2),
b(n) = 8*a(n-1) + 4*b(n-1) + 2*c(n-1),
c(n) = 20*a(n-1) + 6*b(n-1) + 4*c(n-1) + 4*d(n-1) + 2*e(n-1),
d(n) = 4*a(n-1), e(n) = 16*a(n-1) + 4*b(n-1),
with a(n), b(n), c(n), d(n), e(n) = 0 for n <= 0 except for a(0)=1.
Recurrence 2:
a(n) = 13*a(n-1) + 20*a(n-2) - 64*a(n-3) + 112*a(n-4) + 224*a(n-5) - 128*a(n-6) for n >= 6. For n < 6, recurrence 1 can be used.

A360065 Number of 3-dimensional tilings of a 2 X 2 X n box using 2 X 1 X 1 dominos and trominos (L-shaped connection of 3 cubes).

Original entry on oeis.org

1, 2, 45, 412, 4705, 50374, 549109, 5955544, 64683649, 702259786, 7625147293, 82791470836, 898931464993, 9760376329678, 105975828745957, 1150659965697328, 12493588746237697, 135652375422278290, 1472880803124594061, 15992184812239930060, 173639288800074705121
Offset: 0

Views

Author

Gerhard Kirchner, Jan 30 2023

Keywords

Comments

Recurrence 1 is derived in A359884, "3d-tilings of a 2 X 2 X n box" as a special case of a more general tiling problem: III, example 9.

Examples

			a(2)=45
1) Two parallel trominos and one domino: There are 3 middle axes of the 2 X 2 cube with 4 rotation images each: 12 images.
       ___             ___         ___ ___
     /__ /|          /   /|      /__ /   /|
   /__ /| |___     /__ /  |    /__ /__ /  |
  |   | |/__ /|   |   |  /    |   |   |  /|
  |   |/__ /| | + |___|/   =  |   |___|/| |
  |       | |/                |       | |/
  |_______|/                  |_______|/
2) Two "linked" trominos and one domino: 12 rotation images and, as there is no symmetry plane, 12 mirror images: 24 images.
       ___                       ___         ___ ___
     /   /|                    /   /|      /   /   /|
   /__ /  |      _______     /__ /  |    /__ /__ /  |
  |   |  /     /__     /|   |   |  /    |   |   |  /|
  |   | |  +  |  /__ /  | + |___|/   =  |   |___|/  |
  |   | |     |_|   |  /                |   |   |  /
  |___|/        |___|/                  |___|___|/
3) Using only dominos: A006253(2)=9 ways, Sum: a(2) = 12 + 24 + 9 = 45.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, 42, 6, -81, 27}, {1, 2, 45, 412, 4705}, 25] (* Paolo Xausa, Oct 02 2024 *)

Formula

G.f.: (1 - 5*x - 11*x^2 + 7*x^3) / (1 - 7*x - 42*x^2 - 6*x^3 + 81*x^4 - 27*x^5).
Recurrence 1:
a(n) = 2*a(n-1) + b(n-1) + c(n-1) + 13*a(n-2) + 2*b(n-2) + c(n-2) + 2*d(n-2),
b(n) = 12*a(n-1) + 2*b(n-1) + 2*c(n-1) + e(n-1),
c(n) = 16*a(n-1) + 6*b(n-1) + c(n-1) + 2*e(n-1),
d(n) = 4*a(n-1) + 2*b(n-1) + d(n-1),
e(n) = 16*a(n-1) + 5*b(n-1) + 2*c(n-1) + 2*d(n-1),
with a(n), b(n), c(n), d(n), e(n) = 0 for n <= 0 except for a(0)=1.
Recurrence 2:
a(n) = 7*a(n-1) + 42*a(n-2) + 6*a(n-3) - 81*a(n-4) + 27*a(n-5) for n >= 5.
For n < 5, recurrence 1 can be used.
Showing 1-2 of 2 results.