This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360069 #8 Jan 29 2023 10:45:06 %S A360069 0,1,2,3,4,5,9,9,13,16,25,26,39,42,62,67,95,107,147,168,225,245,327, %T A360069 381,471,565,703,823,1038,1208,1443,1743,2088,2439,2937,3476,4163, %U A360069 4921,5799,6825,8109,9527,11143,13122,15402,17887,20995,24506,28546,33234,38661 %N A360069 Number of integer partitions of n whose multiset of multiplicities has integer mean. %e A360069 The a(1) = 1 through a(8) = 13 partitions: %e A360069 (1) (2) (3) (4) (5) (6) (7) (8) %e A360069 (11) (21) (22) (32) (33) (43) (44) %e A360069 (111) (31) (41) (42) (52) (53) %e A360069 (1111) (2111) (51) (61) (62) %e A360069 (11111) (222) (421) (71) %e A360069 (321) (2221) (431) %e A360069 (2211) (4111) (521) %e A360069 (3111) (211111) (2222) %e A360069 (111111) (1111111) (3311) %e A360069 (5111) %e A360069 (221111) %e A360069 (311111) %e A360069 (11111111) %e A360069 For example, the partition (3,2,1,1,1,1) has multiplicities (1,1,4) with mean 2, so is counted under a(9). On the other hand, the partition (3,2,2,1,1) has multiplicities (1,2,2) with mean 5/3, so is not counted under a(9). %t A360069 Table[Length[Select[IntegerPartitions[n], IntegerQ[Mean[Length/@Split[#]]]&]],{n,0,30}] %Y A360069 These partitions are ranked by A067340 (prime signature has integer mean). %Y A360069 Parts instead of multiplicities: A067538, strict A102627, ranked by A316413. %Y A360069 The case where the parts have integer mean also is ranked by A359905. %Y A360069 A000041 counts integer partitions, strict A000009. %Y A360069 A051293 counts subsets with integer mean, median A000975. %Y A360069 A058398 counts partitions by mean, see also A008284, A327482. %Y A360069 A088529/A088530 gives mean of prime signature (A124010). %Y A360069 A326622 counts factorizations with integer mean, strict A328966. %Y A360069 Cf. A082550, A240219, A316313, A325347, A326669, A327475, A349156, A360068. %K A360069 nonn %O A360069 0,3 %A A360069 _Gus Wiseman_, Jan 27 2023