cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360075 a(n) is the product of the digits of A007602(n), the n-th Zuckerman number.

This page as a plain text file.
%I A360075 #9 Jan 27 2023 03:12:48
%S A360075 1,2,3,4,5,6,7,8,9,1,2,5,8,18,1,2,5,16,6,15,16,35,4,12,16,6,15,96,24,
%T A360075 12,48,84,105,48,1,2,3,5,6,3,42,32,63,4,108,3,18,48,24,175,35,4,32,24,
%U A360075 108,3,18,144,21,252,18,135,8,64,96,96,288,108,14,63
%N A360075 a(n) is the product of the digits of A007602(n), the n-th Zuckerman number.
%C A360075 Zuckerman numbers (A007602) correspond to numbers divisible by the product of their digits.
%H A360075 Rémy Sigrist, <a href="/A360075/b360075.txt">Table of n, a(n) for n = 1..10000</a>
%F A360075 a(n) = A007954(A007602(n)).
%F A360075 a(n) = A051801(A007602(n)).
%F A360075 a(n) * A288069(n) = A007602(n).
%e A360075 For n = 1515:
%e A360075 - A007602(1515) = 11834112,
%e A360075 - so a(1515) = 1*1*8*3*4*1*1*2 = 192.
%o A360075 (PARI) { for (n=1, 7119, p=vecprod(digits(n)); if (p && n%p==0, print1 (p", "))) }
%Y A360075 Cf. A007602, A007954, A051801, A288069, A325454.
%K A360075 nonn,base
%O A360075 1,2
%A A360075 _Rémy Sigrist_, Jan 24 2023