cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360088 a(n) = Sum_{k=0..n} (-1)^k * binomial(4*k,n-k).

This page as a plain text file.
%I A360088 #11 Jan 25 2023 09:07:42
%S A360088 1,-1,-3,1,13,4,-49,-46,165,284,-476,-1417,1003,6220,-110,-24644,
%T A360088 -14831,88184,113224,-278288,-619744,715647,2891977,-1036173,
%U A360088 -12068353,-3381661,45588556,41600921,-154355594,-259984429,448828716,1305250324,-964837159,-5754843123
%N A360088 a(n) = Sum_{k=0..n} (-1)^k * binomial(4*k,n-k).
%H A360088 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-4,-6,-4,-1).
%F A360088 a(n) = -a(n-1) - 4*a(n-2) - 6*a(n-3) - 4*a(n-4) - a(n-5).
%F A360088 G.f.: 1/(1 + x*(1+x)^4).
%o A360088 (PARI) a(n) = sum(k=0, n, (-1)^k*binomial(4*k, n-k));
%o A360088 (PARI) my(N=40, x='x+O('x^N)); Vec(1/(1+x*(1+x)^4))
%Y A360088 Cf. A077979, A360087, A360089.
%Y A360088 Cf. A099235.
%K A360088 sign,easy
%O A360088 0,3
%A A360088 _Seiichi Manyama_, Jan 25 2023