cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A360089 a(n) = Sum_{k=0..n} (-1)^k * binomial(5*k,n-k).

This page as a plain text file.
%I A360089 #13 Jan 25 2023 09:07:46
%S A360089 1,-1,-4,-1,21,29,-80,-244,153,1473,836,-6920,-12220,23209,91213,
%T A360089 -21511,-510680,-457965,2210520,4921941,-6271749,-33288595,-3876765,
%U A360089 173223185,214943855,-682969376,-1912499375,1498348275,11882164650,5332839025,-57402248250,-92821609874
%N A360089 a(n) = Sum_{k=0..n} (-1)^k * binomial(5*k,n-k).
%H A360089 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-5,-10,-10,-5,-1).
%F A360089 a(n) = -a(n-1) - 5*a(n-2) - 10*a(n-3) - 10*a(n-4) - 5*a(n-5) - a(n-6).
%F A360089 G.f.: 1/(1 + x*(1+x)^5).
%o A360089 (PARI) a(n) = sum(k=0, n, (-1)^k*binomial(5*k, n-k));
%o A360089 (PARI) my(N=40, x='x+O('x^N)); Vec(1/(1+x*(1+x)^5))
%Y A360089 Cf. A077979, A360087, A360088.
%Y A360089 Cf. A360090.
%K A360089 sign,easy
%O A360089 0,3
%A A360089 _Seiichi Manyama_, Jan 25 2023