This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A360098 #24 Feb 18 2023 15:28:51 %S A360098 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,15,1,1,1,1,1,7,1,105, %T A360098 1,1,1,1,1,1,71,1,945,1,1,1,1,1,10,1,1001,1,10395,1,1,1,1,1,3,280,1, %U A360098 18089,1,135135,1,1,1,1,1,7,15,15400,1,398959,1 %N A360098 Square array read by antidiagonals upwards: T(n,k) is the number of ways of choosing nonnegative numbers for k n-sided dice, k >= 0, n >= 1, so that summing the faces can give any integer from 0 to n^k - 1. %C A360098 T(n,k) depends on n only through its prime signature. (See A118914.) For example, for fixed k, T(p*q^2,k) will be the same for any pair of distinct primes p and q. Hence we may define T(n,k) = R(s(n),k), where s(n) is the prime signature of n. %C A360098 Also the number of Krasner factorizations of (x^(n^k)-1) / (x-1) into k polynomials each having n nonzero terms all with coefficient +1. (Krasner and Ranulac, 1937) %H A360098 M. Krasner and B. Ranulac, <a href="https://gallica.bnf.fr/ark:/12148/bpt6k31562/f397.item">Sur une propriété des polynomes de la division du cercle</a>, Comptes Rendus Académie des Sciences Paris, 240:397-399, 1937. %H A360098 Matthew C. Lettington and Karl Michael Schmidt, <a href="https://arxiv.org/abs/1910.02455">Divisor Functions and the Number of Sum Systems</a>, arXiv:1910.02455 [math.NT], 2019. %F A360098 Use M to denote a (k-1)-element multiset of positive integers. Let U denote the (k-1)-element multiset whose elements all equal 1 and let N denote the (k-1)-element multiset whose elements all equal n. For i in M, let M_{i,j} denote the result of replacing i with j in M. Then T(1,k) = T(n,0) = 1, while for n > 1 and k > 0 we have T(n,k) = r(n,N) / (k-1)! where r(i,M) is given by the recurrence %F A360098 r(i,U) = 1 for i > 1, %F A360098 r(i,M) = Sum_{m in M} Sum_{d|i,d<i} r(m,M_{m,d}) for M != U. %e A360098 There are 3 ways to assign numbers to two 4-sided dice: %e A360098 {{0, 1, 2, 3}, {0, 4, 8, 12}}, %e A360098 {{0, 1, 8, 9}, {0, 2, 4, 6}}, %e A360098 {{0, 1, 4, 5}, {0, 2, 8, 10}}. %e A360098 The northwest corner of T(n,k) begins: %e A360098 1 1 1 1 1 1 1 ... (s(1) = {}) %e A360098 1 1 1 1 1 1 1 ... (s(2) = {1}) %e A360098 1 1 1 1 1 1 1 ... (s(3) = {1}) %e A360098 1 1 3 15 105 945 10395 ... (s(4) = {2}) %e A360098 1 1 1 1 1 1 1 ... (s(5) = {1}) %e A360098 1 1 7 71 1001 18089 398959 ... (s(6) = {1,1}) %e A360098 1 1 1 1 1 1 1 ... (s(7) = {1}) %e A360098 1 1 10 280 15400 1401400 190590400 ... (s(8) = {3}) %e A360098 1 1 3 15 105 945 10395 ... (s(9) = {2}) %e A360098 1 1 7 71 1001 18089 398959 ... (s(10) = {1,1}) %e A360098 1 1 1 1 1 1 1 ... (s(11) = {1}) %e A360098 1 1 42 3660 614040 169200360 69444920160 ... (s(12) = {1,2}) %e A360098 1 1 1 1 1 1 1 ... (s(13) = {1}) %e A360098 1 1 7 71 1001 18089 398959 ... (s(14) = {1,1}) %e A360098 1 1 7 71 1001 18089 398959 ... (s(15) = {1,1}) %e A360098 1 1 35 5775 2627625 2546168625 4509264634875 ... (s(16) = {4}) %e A360098 ... %o A360098 (SageMath) %o A360098 @cached_function %o A360098 def r(i,M): %o A360098 kminus1 = len(M) %o A360098 u = tuple([1 for j in range(kminus1)]) %o A360098 if i > 1 and M == u: %o A360098 return(1) %o A360098 elif M != u: %o A360098 divList = divisors(i)[:-1] %o A360098 return(sum(r(M[j],tuple(sorted(M[:j]+tuple([d])+M[j+1:]))) for d in divList for j in range(kminus1))) %o A360098 def T(n,k): %o A360098 if n == 1 or k == 0: %o A360098 return(1) %o A360098 else: %o A360098 return(r(n,tuple([n for j in range(k-1)]))) / factorial(k-1) %Y A360098 For rows of index n = p^j, p prime, or equivalently, for rows of signature {j} we have T(p^2,k) = R({2},k) = A001147(k), T(p^3,k) = R({3},k) = A025035(k), T(p^4,k) = R({4},k) = A025036(k), and, generally, T(p^j,k) = R({j},k) = the k-th element of the j-th column of the square array A060540. %Y A360098 For n = p * q, p and q distinct primes, we have T(p*q,k) = R({1,1},k) = |A002119(k)|. %Y A360098 Column correspondences are T(n,2) = A273013(n) and T(n,3) = A131514(n). %Y A360098 Cf. A118914. %K A360098 nonn,tabl %O A360098 1,18 %A A360098 _William P. Orrick_, Jan 25 2023